Loading…

Reconstruction of a leaking gas cloud from a passive FTIR scanning remote-sensing imaging system

The concentration-path-length product (CL) image of the leaking gas cloud measured by the passive Fourier transform infrared (FTIR) scanning remote-sensing imaging system has a low resolution. Gas cloud diffusion is affected by wind speed and direction, which makes it difficult to trace the source o...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2021-10, Vol.60 (30), p.9396
Main Authors: Hu, Yunyou, Xu, Liang, Shen, Xianchun, Jin, Ling, Xu, Hanyang, Deng, Yasong, Liu, Jianguo, Liu, Wenqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concentration-path-length product (CL) image of the leaking gas cloud measured by the passive Fourier transform infrared (FTIR) scanning remote-sensing imaging system has a low resolution. Gas cloud diffusion is affected by wind speed and direction, which makes it difficult to trace the source of a leakage. Therefore, we propose a method to reconstruct the CL image of the leaking gas cloud applied to the passive FTIR scanning remote-sensing imaging system. First, bicubic interpolation is employed to upsample the low-resolution CL image of gas clouds. Second, the maximum noise-equivalent concentration-path-length (NECL) product is used as a threshold to segment the high-resolution gas cloud image. Third, image morphology processing and the evaluation criteria of the leaking gas cloud are applied to detect the leaking gas cloud. Finally, the high-resolution CL image of the leaking gas cloud is superimposed onto the background image. The effectiveness of the reconstruction method is proven by the S F 6 remote-sensing experiment and simulation. The results show that the proposed method should be effectively implemented to reconstruct the high-resolution CL image of the leaking gas cloud. The reconstructed leaking gas cloud plume, as well as the location of the leakage source, are quite obvious. The reconstruction method has been successfully applied to passive FTIR scanning remote-sensing imaging systems, with high accuracy, in real time, and with robustness.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.439086