Loading…
New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean
The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart‐CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location paramete...
Saved in:
Published in: | Quality and reliability engineering international 2021-12, Vol.37 (8), p.3512-3528 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3 |
container_end_page | 3528 |
container_issue | 8 |
container_start_page | 3512 |
container_title | Quality and reliability engineering international |
container_volume | 37 |
creator | Haq, Abdul Munir, Waqas |
description | The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart‐CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double‐ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run‐length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run‐length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts. |
doi_str_mv | 10.1002/qre.2930 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596288256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596288256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3</originalsourceid><addsrcrecordid>eNp10M1Kw0AQB_BFFIxV8BEWvHhJ3U26ye5RSv2AqmjteZlsJjalyba7KaE3H8Fn9ElMjFdPwww_ZoY_IZecjTlj0c3O4ThSMTsiAWdKhTyJ5TEJWDqRoWQ8PSVn3q8Z67CSAZk9Y0uny8XyiUKd08UK2xW45vvzaxiavvO0sI5Wti4b68r6gzYrpFtnDXpPK4T6nJwUsPF48VdHZHk3e58-hPOX-8fp7Tw0_UshmNjkSSQmuZIAmQIUwEymRCplzBE5ZjzPwKQKQCUJpKCQFRw4RyFQFvGIXA17u-O7PfpGr-3e1d1JHQmVRFJGIunU9aCMs947LPTWlRW4g-ZM9yHpLiTdf9TRcKBtucHDv06_vs1-_Q__qGiy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596288256</pqid></control><display><type>article</type><title>New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Haq, Abdul ; Munir, Waqas</creator><creatorcontrib>Haq, Abdul ; Munir, Waqas</creatorcontrib><description>The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart‐CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double‐ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run‐length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run‐length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2930</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>average run‐length ; control charts ; cumulative sum ; CUSUM charts ; double ranked set sampling ; Monitoring ; Process parameters ; Random sampling ; statistical process control</subject><ispartof>Quality and reliability engineering international, 2021-12, Vol.37 (8), p.3512-3528</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3</citedby><cites>FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3</cites><orcidid>0000-0002-4467-9719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Haq, Abdul</creatorcontrib><creatorcontrib>Munir, Waqas</creatorcontrib><title>New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean</title><title>Quality and reliability engineering international</title><description>The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart‐CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double‐ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run‐length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run‐length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts.</description><subject>average run‐length</subject><subject>control charts</subject><subject>cumulative sum</subject><subject>CUSUM charts</subject><subject>double ranked set sampling</subject><subject>Monitoring</subject><subject>Process parameters</subject><subject>Random sampling</subject><subject>statistical process control</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M1Kw0AQB_BFFIxV8BEWvHhJ3U26ye5RSv2AqmjteZlsJjalyba7KaE3H8Fn9ElMjFdPwww_ZoY_IZecjTlj0c3O4ThSMTsiAWdKhTyJ5TEJWDqRoWQ8PSVn3q8Z67CSAZk9Y0uny8XyiUKd08UK2xW45vvzaxiavvO0sI5Wti4b68r6gzYrpFtnDXpPK4T6nJwUsPF48VdHZHk3e58-hPOX-8fp7Tw0_UshmNjkSSQmuZIAmQIUwEymRCplzBE5ZjzPwKQKQCUJpKCQFRw4RyFQFvGIXA17u-O7PfpGr-3e1d1JHQmVRFJGIunU9aCMs947LPTWlRW4g-ZM9yHpLiTdf9TRcKBtucHDv06_vs1-_Q__qGiy</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Haq, Abdul</creator><creator>Munir, Waqas</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-4467-9719</orcidid></search><sort><creationdate>202112</creationdate><title>New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean</title><author>Haq, Abdul ; Munir, Waqas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>average run‐length</topic><topic>control charts</topic><topic>cumulative sum</topic><topic>CUSUM charts</topic><topic>double ranked set sampling</topic><topic>Monitoring</topic><topic>Process parameters</topic><topic>Random sampling</topic><topic>statistical process control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haq, Abdul</creatorcontrib><creatorcontrib>Munir, Waqas</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haq, Abdul</au><au>Munir, Waqas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2021-12</date><risdate>2021</risdate><volume>37</volume><issue>8</issue><spage>3512</spage><epage>3528</epage><pages>3512-3528</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>The CUmulative SUM (CUSUM) charts have sensitive nature against small and moderate shifts that occur in the process parameter(s). In this article, we propose the CUSUM and combined Shewhart‐CUSUM charts for monitoring the process mean using the best linear unbiased estimator of the location parameter based on ordered double‐ranked set sampling (RSS) scheme, where the CUSUM chart refers to the Crosier's CUSUM chart. The run‐length characteristics of the proposed CUSUM charts are computed with the Monte Carlo simulations. The run‐length profiles of the proposed CUSUM charts are compared with those of the CUSUM charts based on simple random sampling, RSS, and ordered RSS schemes. It is found that the proposed CUSUM charts uniformly outperform their existing counterparts when detecting all different kinds of shifts in the process mean. A real data set is also considered to explain the implementation of the proposed CUSUM charts.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2930</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4467-9719</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2021-12, Vol.37 (8), p.3512-3528 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2596288256 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | average run‐length control charts cumulative sum CUSUM charts double ranked set sampling Monitoring Process parameters Random sampling statistical process control |
title | New CUSUM and Shewhart‐CUSUM charts for monitoring the process mean |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20CUSUM%20and%20Shewhart%E2%80%90CUSUM%20charts%20for%20monitoring%20the%20process%20mean&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Haq,%20Abdul&rft.date=2021-12&rft.volume=37&rft.issue=8&rft.spage=3512&rft.epage=3528&rft.pages=3512-3528&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2930&rft_dat=%3Cproquest_cross%3E2596288256%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2930-ac3cd6254d98aab9ae5a0cb9578831ee1eb1dbac79aa966a7a9e0f1a11e55e8f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596288256&rft_id=info:pmid/&rfr_iscdi=true |