Loading…

Existence and energy decay of a Bresse system with thermoelasticity of type III

In this paper, we investigate a one-dimensional thermoelastic Bresse system, where the heat conduction is given by Green and Naghdi theories. Under some assumptions on the memory kernel and a new introduced stability number, we prove that the unique damping given by the memory term is sufficiently s...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2022-02, Vol.73 (1), Article 3
Main Authors: Djellali, F., Labidi, S., Taallah, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503
cites cdi_FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503
container_end_page
container_issue 1
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 73
creator Djellali, F.
Labidi, S.
Taallah, F.
description In this paper, we investigate a one-dimensional thermoelastic Bresse system, where the heat conduction is given by Green and Naghdi theories. Under some assumptions on the memory kernel and a new introduced stability number, we prove that the unique damping given by the memory term is sufficiently strong to stabilize the system exponentially. In fact, we establish a general decay result from which the exponential and polynomial decays are only special cases.
doi_str_mv 10.1007/s00033-021-01641-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2596618792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596618792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EEqVwAVaWWBvGduzES6gKVKoEC1hbjjtpU7VJsV1BbsNZOBmhQWLHajbv_ZEeIZccrjlAfhMBQEoGgjPgOuMsOyIjnglgBqQ5JiOALGNC5OqUnMW47vGcgxyR5-lHHRM2HqlrFhQbDMuOLtC7jrYVdfQuYIxIY9dTW_pepxVNKwzbFjcuptrX6QCmbodfn7PZ7JycVG4T8eL3jsnr_fRl8sjmTw-zye2ceclNYqUoC2GAg5DCKA_COFCmzHIttVQcFxq1KlVZVUa7yhS5V6YSUHAtM-8VyDG5GnZ3oX3bY0x23e5D07-0QhmteZEb0VNioHxoYwxY2V2oty50loP9KWeHcrYvZw_lbNZLcpBiDzdLDH_T_1jfY09v-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596618792</pqid></control><display><type>article</type><title>Existence and energy decay of a Bresse system with thermoelasticity of type III</title><source>Springer Nature</source><creator>Djellali, F. ; Labidi, S. ; Taallah, F.</creator><creatorcontrib>Djellali, F. ; Labidi, S. ; Taallah, F.</creatorcontrib><description>In this paper, we investigate a one-dimensional thermoelastic Bresse system, where the heat conduction is given by Green and Naghdi theories. Under some assumptions on the memory kernel and a new introduced stability number, we prove that the unique damping given by the memory term is sufficiently strong to stabilize the system exponentially. In fact, we establish a general decay result from which the exponential and polynomial decays are only special cases.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-021-01641-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Conduction heating ; Conductive heat transfer ; Damping ; Decay ; Engineering ; Mathematical Methods in Physics ; Polynomials ; Theoretical and Applied Mechanics ; Thermoelasticity</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503</citedby><cites>FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Djellali, F.</creatorcontrib><creatorcontrib>Labidi, S.</creatorcontrib><creatorcontrib>Taallah, F.</creatorcontrib><title>Existence and energy decay of a Bresse system with thermoelasticity of type III</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we investigate a one-dimensional thermoelastic Bresse system, where the heat conduction is given by Green and Naghdi theories. Under some assumptions on the memory kernel and a new introduced stability number, we prove that the unique damping given by the memory term is sufficiently strong to stabilize the system exponentially. In fact, we establish a general decay result from which the exponential and polynomial decays are only special cases.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Damping</subject><subject>Decay</subject><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Polynomials</subject><subject>Theoretical and Applied Mechanics</subject><subject>Thermoelasticity</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EEqVwAVaWWBvGduzES6gKVKoEC1hbjjtpU7VJsV1BbsNZOBmhQWLHajbv_ZEeIZccrjlAfhMBQEoGgjPgOuMsOyIjnglgBqQ5JiOALGNC5OqUnMW47vGcgxyR5-lHHRM2HqlrFhQbDMuOLtC7jrYVdfQuYIxIY9dTW_pepxVNKwzbFjcuptrX6QCmbodfn7PZ7JycVG4T8eL3jsnr_fRl8sjmTw-zye2ceclNYqUoC2GAg5DCKA_COFCmzHIttVQcFxq1KlVZVUa7yhS5V6YSUHAtM-8VyDG5GnZ3oX3bY0x23e5D07-0QhmteZEb0VNioHxoYwxY2V2oty50loP9KWeHcrYvZw_lbNZLcpBiDzdLDH_T_1jfY09v-Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Djellali, F.</creator><creator>Labidi, S.</creator><creator>Taallah, F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Existence and energy decay of a Bresse system with thermoelasticity of type III</title><author>Djellali, F. ; Labidi, S. ; Taallah, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Damping</topic><topic>Decay</topic><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Polynomials</topic><topic>Theoretical and Applied Mechanics</topic><topic>Thermoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djellali, F.</creatorcontrib><creatorcontrib>Labidi, S.</creatorcontrib><creatorcontrib>Taallah, F.</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djellali, F.</au><au>Labidi, S.</au><au>Taallah, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and energy decay of a Bresse system with thermoelasticity of type III</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>73</volume><issue>1</issue><artnum>3</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we investigate a one-dimensional thermoelastic Bresse system, where the heat conduction is given by Green and Naghdi theories. Under some assumptions on the memory kernel and a new introduced stability number, we prove that the unique damping given by the memory term is sufficiently strong to stabilize the system exponentially. In fact, we establish a general decay result from which the exponential and polynomial decays are only special cases.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-021-01641-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 3
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2596618792
source Springer Nature
subjects Conduction heating
Conductive heat transfer
Damping
Decay
Engineering
Mathematical Methods in Physics
Polynomials
Theoretical and Applied Mechanics
Thermoelasticity
title Existence and energy decay of a Bresse system with thermoelasticity of type III
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T17%3A55%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20energy%20decay%20of%20a%20Bresse%20system%20with%20thermoelasticity%20of%20type%C2%A0III&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Djellali,%20F.&rft.date=2022-02-01&rft.volume=73&rft.issue=1&rft.artnum=3&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-021-01641-4&rft_dat=%3Cproquest_cross%3E2596618792%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-b2b82901023295c029a059b47636351ed6e65b5bff96af987c59f2081634cc503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2596618792&rft_id=info:pmid/&rfr_iscdi=true