Loading…

Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor

Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nic...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2021-12, Vol.32 (24), p.28480-28493
Main Authors: Albashir, Abdalazeez Ismail Mohamed, Zhang, Qianqian, Hadi, Mohammed Kamal, Iradukunda, Yves, Ran, Fen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473
cites cdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473
container_end_page 28493
container_issue 24
container_start_page 28480
container_title Journal of materials science. Materials in electronics
container_volume 32
creator Albashir, Abdalazeez Ismail Mohamed
Zhang, Qianqian
Hadi, Mohammed Kamal
Iradukunda, Yves
Ran, Fen
description Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO- x ) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO- x composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO- x composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.
doi_str_mv 10.1007/s10854-021-07229-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597616043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597616043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA52iSJk17UxZ1hcX1oOAtpGmyG7FJTVqhPoJPbXQFb55mBr5_ZvgAOCX4nGAsLhLBFWcIU4KwoLRG0x6YES4KxCr6vA9muOYCMU7pIThK6QVjXLKimoHP5dRE10KvfNCh60Nyg0kwWHg13j9cLi7v3RqmyQ9bk9yHaeG7U9B5lLERRtOOenDBQ5VgH0PnkvMbaF6NHmJoDezUYKJTrwnaEOHWbbaoNzH3nfLawDTmSateaTeEeAwObEbNyW-dg6eb68fFEq3Wt3eLqxXSBakH1Fhc8oY1VrCaUIZpZS1vcF0IWrUlbTRnFVd1KVotGBEcK960pdVFq-uGMVHMwdlub_74bTRpkC9hjD6flJTXoiQlZkWm6I7SMaQUjZV9dJ2KkyRYfjuXO-cyO5c_zuWUQ8UulDLsNyb-rf4n9QWjBYgX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597616043</pqid></control><display><type>article</type><title>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Albashir, Abdalazeez Ismail Mohamed ; Zhang, Qianqian ; Hadi, Mohammed Kamal ; Iradukunda, Yves ; Ran, Fen</creator><creatorcontrib>Albashir, Abdalazeez Ismail Mohamed ; Zhang, Qianqian ; Hadi, Mohammed Kamal ; Iradukunda, Yves ; Ran, Fen</creatorcontrib><description>Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO- x ) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO- x composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO- x composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07229-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Current density ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Flux density ; Gold ; Materials Science ; Nanocomposites ; Nanoparticles ; Nickel oxides ; Optical and Electronic Materials ; Porous materials ; Supercapacitors ; Synthesis</subject><ispartof>Journal of materials science. Materials in electronics, 2021-12, Vol.32 (24), p.28480-28493</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</citedby><cites>FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</cites><orcidid>0000-0002-7383-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Albashir, Abdalazeez Ismail Mohamed</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Hadi, Mohammed Kamal</creatorcontrib><creatorcontrib>Iradukunda, Yves</creatorcontrib><creatorcontrib>Ran, Fen</creatorcontrib><title>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO- x ) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO- x composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO- x composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.</description><subject>Activated carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nickel oxides</subject><subject>Optical and Electronic Materials</subject><subject>Porous materials</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA52iSJk17UxZ1hcX1oOAtpGmyG7FJTVqhPoJPbXQFb55mBr5_ZvgAOCX4nGAsLhLBFWcIU4KwoLRG0x6YES4KxCr6vA9muOYCMU7pIThK6QVjXLKimoHP5dRE10KvfNCh60Nyg0kwWHg13j9cLi7v3RqmyQ9bk9yHaeG7U9B5lLERRtOOenDBQ5VgH0PnkvMbaF6NHmJoDezUYKJTrwnaEOHWbbaoNzH3nfLawDTmSateaTeEeAwObEbNyW-dg6eb68fFEq3Wt3eLqxXSBakH1Fhc8oY1VrCaUIZpZS1vcF0IWrUlbTRnFVd1KVotGBEcK960pdVFq-uGMVHMwdlub_74bTRpkC9hjD6flJTXoiQlZkWm6I7SMaQUjZV9dJ2KkyRYfjuXO-cyO5c_zuWUQ8UulDLsNyb-rf4n9QWjBYgX</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Albashir, Abdalazeez Ismail Mohamed</creator><creator>Zhang, Qianqian</creator><creator>Hadi, Mohammed Kamal</creator><creator>Iradukunda, Yves</creator><creator>Ran, Fen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7383-1265</orcidid></search><sort><creationdate>20211201</creationdate><title>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</title><author>Albashir, Abdalazeez Ismail Mohamed ; Zhang, Qianqian ; Hadi, Mohammed Kamal ; Iradukunda, Yves ; Ran, Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nickel oxides</topic><topic>Optical and Electronic Materials</topic><topic>Porous materials</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albashir, Abdalazeez Ismail Mohamed</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Hadi, Mohammed Kamal</creatorcontrib><creatorcontrib>Iradukunda, Yves</creatorcontrib><creatorcontrib>Ran, Fen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albashir, Abdalazeez Ismail Mohamed</au><au>Zhang, Qianqian</au><au>Hadi, Mohammed Kamal</au><au>Iradukunda, Yves</au><au>Ran, Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>32</volume><issue>24</issue><spage>28480</spage><epage>28493</epage><pages>28480-28493</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO- x ) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO- x composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO- x composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07229-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7383-1265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2021-12, Vol.32 (24), p.28480-28493
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2597616043
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Activated carbon
Characterization and Evaluation of Materials
Charge transfer
Chemistry and Materials Science
Current density
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Energy storage
Flux density
Gold
Materials Science
Nanocomposites
Nanoparticles
Nickel oxides
Optical and Electronic Materials
Porous materials
Supercapacitors
Synthesis
title Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20nanocomposites%20of%20AuNP@C@NiO%20synthesized%20via%20in-situ%20reduction%20as%20promising%20electrode%20materials%20for%20high-performance%20supercapacitor&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Albashir,%20Abdalazeez%20Ismail%20Mohamed&rft.date=2021-12-01&rft.volume=32&rft.issue=24&rft.spage=28480&rft.epage=28493&rft.pages=28480-28493&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07229-y&rft_dat=%3Cproquest_cross%3E2597616043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597616043&rft_id=info:pmid/&rfr_iscdi=true