Loading…
Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor
Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nic...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2021-12, Vol.32 (24), p.28480-28493 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473 |
container_end_page | 28493 |
container_issue | 24 |
container_start_page | 28480 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 32 |
creator | Albashir, Abdalazeez Ismail Mohamed Zhang, Qianqian Hadi, Mohammed Kamal Iradukunda, Yves Ran, Fen |
description | Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO-
x
) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO-
x
composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO-
x
composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles. |
doi_str_mv | 10.1007/s10854-021-07229-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597616043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597616043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKeA52iSJk17UxZ1hcX1oOAtpGmyG7FJTVqhPoJPbXQFb55mBr5_ZvgAOCX4nGAsLhLBFWcIU4KwoLRG0x6YES4KxCr6vA9muOYCMU7pIThK6QVjXLKimoHP5dRE10KvfNCh60Nyg0kwWHg13j9cLi7v3RqmyQ9bk9yHaeG7U9B5lLERRtOOenDBQ5VgH0PnkvMbaF6NHmJoDezUYKJTrwnaEOHWbbaoNzH3nfLawDTmSateaTeEeAwObEbNyW-dg6eb68fFEq3Wt3eLqxXSBakH1Fhc8oY1VrCaUIZpZS1vcF0IWrUlbTRnFVd1KVotGBEcK960pdVFq-uGMVHMwdlub_74bTRpkC9hjD6flJTXoiQlZkWm6I7SMaQUjZV9dJ2KkyRYfjuXO-cyO5c_zuWUQ8UulDLsNyb-rf4n9QWjBYgX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597616043</pqid></control><display><type>article</type><title>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Albashir, Abdalazeez Ismail Mohamed ; Zhang, Qianqian ; Hadi, Mohammed Kamal ; Iradukunda, Yves ; Ran, Fen</creator><creatorcontrib>Albashir, Abdalazeez Ismail Mohamed ; Zhang, Qianqian ; Hadi, Mohammed Kamal ; Iradukunda, Yves ; Ran, Fen</creatorcontrib><description>Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO-
x
) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO-
x
composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO-
x
composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-021-07229-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry and Materials Science ; Current density ; Electrical resistivity ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Flux density ; Gold ; Materials Science ; Nanocomposites ; Nanoparticles ; Nickel oxides ; Optical and Electronic Materials ; Porous materials ; Supercapacitors ; Synthesis</subject><ispartof>Journal of materials science. Materials in electronics, 2021-12, Vol.32 (24), p.28480-28493</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</citedby><cites>FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</cites><orcidid>0000-0002-7383-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Albashir, Abdalazeez Ismail Mohamed</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Hadi, Mohammed Kamal</creatorcontrib><creatorcontrib>Iradukunda, Yves</creatorcontrib><creatorcontrib>Ran, Fen</creatorcontrib><title>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO-
x
) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO-
x
composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO-
x
composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.</description><subject>Activated carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry and Materials Science</subject><subject>Current density</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Gold</subject><subject>Materials Science</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Nickel oxides</subject><subject>Optical and Electronic Materials</subject><subject>Porous materials</subject><subject>Supercapacitors</subject><subject>Synthesis</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKeA52iSJk17UxZ1hcX1oOAtpGmyG7FJTVqhPoJPbXQFb55mBr5_ZvgAOCX4nGAsLhLBFWcIU4KwoLRG0x6YES4KxCr6vA9muOYCMU7pIThK6QVjXLKimoHP5dRE10KvfNCh60Nyg0kwWHg13j9cLi7v3RqmyQ9bk9yHaeG7U9B5lLERRtOOenDBQ5VgH0PnkvMbaF6NHmJoDezUYKJTrwnaEOHWbbaoNzH3nfLawDTmSateaTeEeAwObEbNyW-dg6eb68fFEq3Wt3eLqxXSBakH1Fhc8oY1VrCaUIZpZS1vcF0IWrUlbTRnFVd1KVotGBEcK960pdVFq-uGMVHMwdlub_74bTRpkC9hjD6flJTXoiQlZkWm6I7SMaQUjZV9dJ2KkyRYfjuXO-cyO5c_zuWUQ8UulDLsNyb-rf4n9QWjBYgX</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Albashir, Abdalazeez Ismail Mohamed</creator><creator>Zhang, Qianqian</creator><creator>Hadi, Mohammed Kamal</creator><creator>Iradukunda, Yves</creator><creator>Ran, Fen</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-7383-1265</orcidid></search><sort><creationdate>20211201</creationdate><title>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</title><author>Albashir, Abdalazeez Ismail Mohamed ; Zhang, Qianqian ; Hadi, Mohammed Kamal ; Iradukunda, Yves ; Ran, Fen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activated carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry and Materials Science</topic><topic>Current density</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Gold</topic><topic>Materials Science</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Nickel oxides</topic><topic>Optical and Electronic Materials</topic><topic>Porous materials</topic><topic>Supercapacitors</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albashir, Abdalazeez Ismail Mohamed</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Hadi, Mohammed Kamal</creatorcontrib><creatorcontrib>Iradukunda, Yves</creatorcontrib><creatorcontrib>Ran, Fen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albashir, Abdalazeez Ismail Mohamed</au><au>Zhang, Qianqian</au><au>Hadi, Mohammed Kamal</au><au>Iradukunda, Yves</au><au>Ran, Fen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>32</volume><issue>24</issue><spage>28480</spage><epage>28493</epage><pages>28480-28493</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Porous activated carbon materials are extensively used as adsorbent electrode materials for energy storage devices because of their impressive superlative characteristics, such as large specific surface area, high electrical conductivity and low cost. In this work, Hierarchical porous carbon and nickel oxide nanocomposites modified by gold nanoparticles (AuNP@C@NiO-
x
) were synthesized through in-situ reduction methods and used as high-performance electrode material supercapacitors. The obtained nanocomposites material consisted of NiO, AuNPs nanoparticles on the surface of activated carbon material, in which the activated carbon was used as a hollow structure to attachment of NiO and AuNPs nanoparticles. The electrochemical analysis demonstrated that the AuNP@C@NiO-
x
composite electrode significantly improved electrochemical performance compared to the activated carbon and pristine NiO. The result shows that the AuNP@PC@NiO-
x
composites have the highest specific capacitance of 485.7 F/g at the current density of 1.0 A/g and lower charge-transfer resistance than pure NiO. Furthermore, the assembled asymmetric device (AuNP@PC@NiO-0.15/AC) demonstrated a maximum energy density of 19.22 Wh/kg at a power density of 175.2 W/kg and a better specific capacity retain of 84.2% at a current density of 1.0 A/g after 5000 cycles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-021-07229-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7383-1265</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2021-12, Vol.32 (24), p.28480-28493 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2597616043 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Activated carbon Characterization and Evaluation of Materials Charge transfer Chemistry and Materials Science Current density Electrical resistivity Electrochemical analysis Electrode materials Electrodes Energy storage Flux density Gold Materials Science Nanocomposites Nanoparticles Nickel oxides Optical and Electronic Materials Porous materials Supercapacitors Synthesis |
title | Hybrid nanocomposites of AuNP@C@NiO synthesized via in-situ reduction as promising electrode materials for high-performance supercapacitor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A06%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20nanocomposites%20of%20AuNP@C@NiO%20synthesized%20via%20in-situ%20reduction%20as%20promising%20electrode%20materials%20for%20high-performance%20supercapacitor&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Albashir,%20Abdalazeez%20Ismail%20Mohamed&rft.date=2021-12-01&rft.volume=32&rft.issue=24&rft.spage=28480&rft.epage=28493&rft.pages=28480-28493&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-021-07229-y&rft_dat=%3Cproquest_cross%3E2597616043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-bf065b4bf749124028ff5b093728d62bc5485a967dc741750a5bd6fc3dc9b4473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597616043&rft_id=info:pmid/&rfr_iscdi=true |