Loading…

Evaluating Explainability Methods Intended for Multiple Stakeholders

Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanation needs of different groups using an individual...

Full description

Saved in:
Bibliographic Details
Published in:KI. Künstliche Intelligenz (Oldenbourg) 2021-11, Vol.35 (3-4), p.397-411
Main Authors: Martin, Kyle, Liret, Anne, Wiratunga, Nirmalie, Owusu, Gilbert, Kern, Mathias
Format: Magazinearticle
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Explanation mechanisms for intelligent systems are typically designed to respond to specific user needs, yet in practice these systems tend to have a wide variety of users. This can present a challenge to organisations looking to satisfy the explanation needs of different groups using an individual system. In this paper we present an explainability framework formed of a catalogue of explanation methods, and designed to integrate with a range of projects within a telecommunications organisation. Explainability methods are split into low-level explanations and high-level explanations for increasing levels of contextual support in their explanations. We motivate this framework using the specific case-study of explaining the conclusions of field network engineering experts to non-technical planning staff and evaluate our results using feedback from two distinct user groups; domain-expert telecommunication engineers and non-expert desk agent staff. We also present and investigate two metrics designed to model the quality of explanations - Meet-In-The-Middle (MITM) and Trust-Your-Neighbours (TYN). Our analysis of these metrics offers new insights into the use of similarity knowledge for the evaluation of explanations.
ISSN:0933-1875
1610-1987
DOI:10.1007/s13218-020-00702-6