Loading…

Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)

Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims...

Full description

Saved in:
Bibliographic Details
Published in:IOP conference series. Earth and environmental science 2021-10, Vol.880 (1), p.12027
Main Authors: Aprilina, K, Susandi, A, Sopaheluwakan, A, Harsa, H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63
cites cdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63
container_end_page
container_issue 1
container_start_page 12027
container_title IOP conference series. Earth and environmental science
container_volume 880
creator Aprilina, K
Susandi, A
Sopaheluwakan, A
Harsa, H
description Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.
doi_str_mv 10.1088/1755-1315/880/1/012027
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597842741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597842741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</originalsourceid><addsrcrecordid>eNqFUV1LwzAUDaLgnP4FCfgyH2qTtGnaRxlTJwMfps8hy8fM6NouaQf7Lf5ZUysTQRBCcnNzzrm55wJwjdEdRnkeY0ZphBNM4zxHMY4RJoiwEzA6PpweY8TOwYX3G4QylibFCHws204dYG1g-66hNkbLtr_J0m5Fq-FeOCtaW1cwLOucXYesgqJS0AlbmRA7KzVsXK062dq9bQ9wJXzIB4LYdUK6uoFf27ZWuixttYbebrtykJ1MAxgef_Es9gLOfRkK3F6CMyNKr6--zzF4e5i9Tp-ixcvjfHq_iGRCCIsMUQQVyihCiUmwljRVNMtlWmTCyMRkRiLEtMwIznCiKZUrKSkutKGUpjpLxuBm0A1N7DrtW76pO1eFkpzQguUpYSkOqGxAhV68d9rwxgWP3IFjxPtB8N5j3vvNwyA45sMgApEMRFs3P8r_kiZ_kGaz5S8Yb5RJPgF_7Jlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597842741</pqid></control><display><type>article</type><title>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</title><source>ProQuest - Publicly Available Content Database</source><creator>Aprilina, K ; Susandi, A ; Sopaheluwakan, A ; Harsa, H</creator><creatorcontrib>Aprilina, K ; Susandi, A ; Sopaheluwakan, A ; Harsa, H</creatorcontrib><description>Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/880/1/012027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>and Food Security ; Aquacrop ; Climate effects ; Climate models ; Cluster analysis ; Clustering ; Clustering Track Name: Land ; Correlation ; Crops ; El Nino ; Forest ; La Nina ; Ocean currents ; Principal components analysis ; Productivity ; Rainfall ; Rice ; Rice productivity ; Simulation ; Temperature requirements ; Variables ; Variations of climate patterns ; Vector quantization ; Water</subject><ispartof>IOP conference series. Earth and environmental science, 2021-10, Vol.880 (1), p.12027</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</citedby><cites>FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2597842741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aprilina, K</creatorcontrib><creatorcontrib>Susandi, A</creatorcontrib><creatorcontrib>Sopaheluwakan, A</creatorcontrib><creatorcontrib>Harsa, H</creatorcontrib><title>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.</description><subject>and Food Security</subject><subject>Aquacrop</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering Track Name: Land</subject><subject>Correlation</subject><subject>Crops</subject><subject>El Nino</subject><subject>Forest</subject><subject>La Nina</subject><subject>Ocean currents</subject><subject>Principal components analysis</subject><subject>Productivity</subject><subject>Rainfall</subject><subject>Rice</subject><subject>Rice productivity</subject><subject>Simulation</subject><subject>Temperature requirements</subject><subject>Variables</subject><subject>Variations of climate patterns</subject><subject>Vector quantization</subject><subject>Water</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUV1LwzAUDaLgnP4FCfgyH2qTtGnaRxlTJwMfps8hy8fM6NouaQf7Lf5ZUysTQRBCcnNzzrm55wJwjdEdRnkeY0ZphBNM4zxHMY4RJoiwEzA6PpweY8TOwYX3G4QylibFCHws204dYG1g-66hNkbLtr_J0m5Fq-FeOCtaW1cwLOucXYesgqJS0AlbmRA7KzVsXK062dq9bQ9wJXzIB4LYdUK6uoFf27ZWuixttYbebrtykJ1MAxgef_Es9gLOfRkK3F6CMyNKr6--zzF4e5i9Tp-ixcvjfHq_iGRCCIsMUQQVyihCiUmwljRVNMtlWmTCyMRkRiLEtMwIznCiKZUrKSkutKGUpjpLxuBm0A1N7DrtW76pO1eFkpzQguUpYSkOqGxAhV68d9rwxgWP3IFjxPtB8N5j3vvNwyA45sMgApEMRFs3P8r_kiZ_kGaz5S8Yb5RJPgF_7Jlk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Aprilina, K</creator><creator>Susandi, A</creator><creator>Sopaheluwakan, A</creator><creator>Harsa, H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20211001</creationdate><title>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</title><author>Aprilina, K ; Susandi, A ; Sopaheluwakan, A ; Harsa, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>and Food Security</topic><topic>Aquacrop</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering Track Name: Land</topic><topic>Correlation</topic><topic>Crops</topic><topic>El Nino</topic><topic>Forest</topic><topic>La Nina</topic><topic>Ocean currents</topic><topic>Principal components analysis</topic><topic>Productivity</topic><topic>Rainfall</topic><topic>Rice</topic><topic>Rice productivity</topic><topic>Simulation</topic><topic>Temperature requirements</topic><topic>Variables</topic><topic>Variations of climate patterns</topic><topic>Vector quantization</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprilina, K</creatorcontrib><creatorcontrib>Susandi, A</creatorcontrib><creatorcontrib>Sopaheluwakan, A</creatorcontrib><creatorcontrib>Harsa, H</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprilina, K</au><au>Susandi, A</au><au>Sopaheluwakan, A</au><au>Harsa, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>880</volume><issue>1</issue><spage>12027</spage><pages>12027-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/880/1/012027</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2021-10, Vol.880 (1), p.12027
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2597842741
source ProQuest - Publicly Available Content Database
subjects and Food Security
Aquacrop
Climate effects
Climate models
Cluster analysis
Clustering
Clustering Track Name: Land
Correlation
Crops
El Nino
Forest
La Nina
Ocean currents
Principal components analysis
Productivity
Rainfall
Rice
Rice productivity
Simulation
Temperature requirements
Variables
Variations of climate patterns
Vector quantization
Water
title Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20effect%20of%20climate%20variation%20on%20irrigated%20and%20rainfed%20rice%20productivity%20based%20on%20aquacrop%20crop%20modelling%20simulation%20(Case%20Study%20of%20Java%20Island)&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Aprilina,%20K&rft.date=2021-10-01&rft.volume=880&rft.issue=1&rft.spage=12027&rft.pages=12027-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/880/1/012027&rft_dat=%3Cproquest_cross%3E2597842741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597842741&rft_id=info:pmid/&rfr_iscdi=true