Loading…
Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)
Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims...
Saved in:
Published in: | IOP conference series. Earth and environmental science 2021-10, Vol.880 (1), p.12027 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63 |
container_end_page | |
container_issue | 1 |
container_start_page | 12027 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 880 |
creator | Aprilina, K Susandi, A Sopaheluwakan, A Harsa, H |
description | Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation. |
doi_str_mv | 10.1088/1755-1315/880/1/012027 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597842741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597842741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</originalsourceid><addsrcrecordid>eNqFUV1LwzAUDaLgnP4FCfgyH2qTtGnaRxlTJwMfps8hy8fM6NouaQf7Lf5ZUysTQRBCcnNzzrm55wJwjdEdRnkeY0ZphBNM4zxHMY4RJoiwEzA6PpweY8TOwYX3G4QylibFCHws204dYG1g-66hNkbLtr_J0m5Fq-FeOCtaW1cwLOucXYesgqJS0AlbmRA7KzVsXK062dq9bQ9wJXzIB4LYdUK6uoFf27ZWuixttYbebrtykJ1MAxgef_Es9gLOfRkK3F6CMyNKr6--zzF4e5i9Tp-ixcvjfHq_iGRCCIsMUQQVyihCiUmwljRVNMtlWmTCyMRkRiLEtMwIznCiKZUrKSkutKGUpjpLxuBm0A1N7DrtW76pO1eFkpzQguUpYSkOqGxAhV68d9rwxgWP3IFjxPtB8N5j3vvNwyA45sMgApEMRFs3P8r_kiZ_kGaz5S8Yb5RJPgF_7Jlk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597842741</pqid></control><display><type>article</type><title>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</title><source>ProQuest - Publicly Available Content Database</source><creator>Aprilina, K ; Susandi, A ; Sopaheluwakan, A ; Harsa, H</creator><creatorcontrib>Aprilina, K ; Susandi, A ; Sopaheluwakan, A ; Harsa, H</creatorcontrib><description>Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/880/1/012027</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>and Food Security ; Aquacrop ; Climate effects ; Climate models ; Cluster analysis ; Clustering ; Clustering Track Name: Land ; Correlation ; Crops ; El Nino ; Forest ; La Nina ; Ocean currents ; Principal components analysis ; Productivity ; Rainfall ; Rice ; Rice productivity ; Simulation ; Temperature requirements ; Variables ; Variations of climate patterns ; Vector quantization ; Water</subject><ispartof>IOP conference series. Earth and environmental science, 2021-10, Vol.880 (1), p.12027</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</citedby><cites>FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2597842741?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Aprilina, K</creatorcontrib><creatorcontrib>Susandi, A</creatorcontrib><creatorcontrib>Sopaheluwakan, A</creatorcontrib><creatorcontrib>Harsa, H</creatorcontrib><title>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.</description><subject>and Food Security</subject><subject>Aquacrop</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering Track Name: Land</subject><subject>Correlation</subject><subject>Crops</subject><subject>El Nino</subject><subject>Forest</subject><subject>La Nina</subject><subject>Ocean currents</subject><subject>Principal components analysis</subject><subject>Productivity</subject><subject>Rainfall</subject><subject>Rice</subject><subject>Rice productivity</subject><subject>Simulation</subject><subject>Temperature requirements</subject><subject>Variables</subject><subject>Variations of climate patterns</subject><subject>Vector quantization</subject><subject>Water</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFUV1LwzAUDaLgnP4FCfgyH2qTtGnaRxlTJwMfps8hy8fM6NouaQf7Lf5ZUysTQRBCcnNzzrm55wJwjdEdRnkeY0ZphBNM4zxHMY4RJoiwEzA6PpweY8TOwYX3G4QylibFCHws204dYG1g-66hNkbLtr_J0m5Fq-FeOCtaW1cwLOucXYesgqJS0AlbmRA7KzVsXK062dq9bQ9wJXzIB4LYdUK6uoFf27ZWuixttYbebrtykJ1MAxgef_Es9gLOfRkK3F6CMyNKr6--zzF4e5i9Tp-ixcvjfHq_iGRCCIsMUQQVyihCiUmwljRVNMtlWmTCyMRkRiLEtMwIznCiKZUrKSkutKGUpjpLxuBm0A1N7DrtW76pO1eFkpzQguUpYSkOqGxAhV68d9rwxgWP3IFjxPtB8N5j3vvNwyA45sMgApEMRFs3P8r_kiZ_kGaz5S8Yb5RJPgF_7Jlk</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Aprilina, K</creator><creator>Susandi, A</creator><creator>Sopaheluwakan, A</creator><creator>Harsa, H</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20211001</creationdate><title>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</title><author>Aprilina, K ; Susandi, A ; Sopaheluwakan, A ; Harsa, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>and Food Security</topic><topic>Aquacrop</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering Track Name: Land</topic><topic>Correlation</topic><topic>Crops</topic><topic>El Nino</topic><topic>Forest</topic><topic>La Nina</topic><topic>Ocean currents</topic><topic>Principal components analysis</topic><topic>Productivity</topic><topic>Rainfall</topic><topic>Rice</topic><topic>Rice productivity</topic><topic>Simulation</topic><topic>Temperature requirements</topic><topic>Variables</topic><topic>Variations of climate patterns</topic><topic>Vector quantization</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aprilina, K</creatorcontrib><creatorcontrib>Susandi, A</creatorcontrib><creatorcontrib>Sopaheluwakan, A</creatorcontrib><creatorcontrib>Harsa, H</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aprilina, K</au><au>Susandi, A</au><au>Sopaheluwakan, A</au><au>Harsa, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island)</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>880</volume><issue>1</issue><spage>12027</spage><pages>12027-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Aquacrop is free-licensed Food and Agricultural Organization’s crop modelling that requires minimum inputs of climate variables namely rainfall, maximum temperature, minimum temperature variables and geographic information of the area to be simulated (longitude, latitude, altitude). This study aims to measure the difference in irrigated and rainfed rice productivity from the Aquacrop crop modelling simulation to the influence of climate pattern variations in Java Island, Indonesia. The k-means clustering method applied to the rainfall, maximum, and minimum temperature variables from the bias-corrected MERRA2 data resulted in two climate regions. The principal component analysis result showed that the maximum and minimum temperature variables are the variables that most contribute to the determination of the clustering area using the k-means method compared to the rainfall variable. This study has calculated the probability of the irrigated and rainfed rice productivity resulting from the Aquacrop simulation in those climate regions during La Nina [El Nino] years that will be higher [smaller] than the mean value of rice productivity during neutral years. However, the validation between the actual irrigated and rainfed rice productivity with the Aquacrop simulation results from 2001-2014 showed low correlation values that vary between negative and positive values in all climate regions. Meanwhile, the validation on the El Nino composite years generally showed positive correlation values. In addition, the neutral and La Nina composite years resulted in varying correlation values between negative and positive correlation.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/880/1/012027</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2021-10, Vol.880 (1), p.12027 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2597842741 |
source | ProQuest - Publicly Available Content Database |
subjects | and Food Security Aquacrop Climate effects Climate models Cluster analysis Clustering Clustering Track Name: Land Correlation Crops El Nino Forest La Nina Ocean currents Principal components analysis Productivity Rainfall Rice Rice productivity Simulation Temperature requirements Variables Variations of climate patterns Vector quantization Water |
title | Study of the effect of climate variation on irrigated and rainfed rice productivity based on aquacrop crop modelling simulation (Case Study of Java Island) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A30%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20effect%20of%20climate%20variation%20on%20irrigated%20and%20rainfed%20rice%20productivity%20based%20on%20aquacrop%20crop%20modelling%20simulation%20(Case%20Study%20of%20Java%20Island)&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Aprilina,%20K&rft.date=2021-10-01&rft.volume=880&rft.issue=1&rft.spage=12027&rft.pages=12027-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/880/1/012027&rft_dat=%3Cproquest_cross%3E2597842741%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3227-f2d209dfd252f31ec54d568c496afc3f6fc007ec621613e55cbcc519ef5554e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597842741&rft_id=info:pmid/&rfr_iscdi=true |