Loading…

Radiative-dynamical Simulation of Jupiter’s Stratosphere and Upper Troposphere

We present a two-dimensional radiative-dynamical model of the combined stratosphere and upper troposphere of Jupiter to understand its temperature distribution and meridional circulation pattern. Our study highlights the importance of radiative and mechanical forcing for driving the middle atmospher...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-11, Vol.921 (2), p.174
Main Authors: Zube, Nicholas G., Zhang, Xi, Li, Tao, Le, Tianhao, Li, Cheng, Guerlet, Sandrine, Tan, Xianyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003
cites cdi_FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003
container_end_page
container_issue 2
container_start_page 174
container_title The Astrophysical journal
container_volume 921
creator Zube, Nicholas G.
Zhang, Xi
Li, Tao
Le, Tianhao
Li, Cheng
Guerlet, Sandrine
Tan, Xianyu
description We present a two-dimensional radiative-dynamical model of the combined stratosphere and upper troposphere of Jupiter to understand its temperature distribution and meridional circulation pattern. Our study highlights the importance of radiative and mechanical forcing for driving the middle atmospheric circulation on Jupiter. Our model adopts a state-of-the-art radiative transfer scheme with recent observations of Jovian gas abundances and haze distribution. Assuming local radiative equilibrium, latitudinal variation of hydrocarbon abundances is not able to explain the observed latitudinal temperature variations in the mid-latitudes. With mechanical forcing parameterized as a frictional drag on zonal wind, our model produces ∼2 K latitudinal temperature variations observed in low to mid-latitudes in the troposphere and lower stratosphere, but cannot reproduce the observed 5 K temperature variations in the middle stratosphere. In the high latitudes, temperature and meridional circulation depend strongly on polar haze radiation. The simulated residual mean circulation shows either two broad equator-to-pole cells or multi-cell patterns, depending on the frictional drag timescale and polar haze properties. A more realistic wave parameterization and a better observational characterization of haze distribution and optical properties are needed to better understand latitudinal temperature distributions and circulation patterns in the middle atmosphere of Jupiter.
doi_str_mv 10.3847/1538-4357/ac1e95
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2597843194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597843194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKd3jwVvYl3aNE1zHEOdMlDcBt5C0iQsY2ti0g5282_49_wltnTMk6eP7-X5Xj4eAK4TeI-KjIwSjIo4Q5iMeJkoik_A4BidggGEMItzRD7OwUUI625NKR2At3cuDa_NTsVyX_GtKfkmmptts2lDW0VWRy-NM7XyP1_fIZrXntc2uJXyKuKVjJbOKR8tvHWH9BKcab4J6uowh2D5-LCYTOPZ69PzZDyLS1TgOuZKyAITzqngQmIlMJGoVJBqoXKBoJSK5okWMINFylOR6xTnREgtkNQlhGgIbvveFd8w582W-z2z3LDpeMZMFRoGEUlzirJd0sI3Pey8_WxUqNnaNr5q_2MppqTIUEKzloI9VXobglf62JtA1klmnVHWGWW95Pbkrj8x1v11_ov_AvscgDE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597843194</pqid></control><display><type>article</type><title>Radiative-dynamical Simulation of Jupiter’s Stratosphere and Upper Troposphere</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Zube, Nicholas G. ; Zhang, Xi ; Li, Tao ; Le, Tianhao ; Li, Cheng ; Guerlet, Sandrine ; Tan, Xianyu</creator><creatorcontrib>Zube, Nicholas G. ; Zhang, Xi ; Li, Tao ; Le, Tianhao ; Li, Cheng ; Guerlet, Sandrine ; Tan, Xianyu</creatorcontrib><description>We present a two-dimensional radiative-dynamical model of the combined stratosphere and upper troposphere of Jupiter to understand its temperature distribution and meridional circulation pattern. Our study highlights the importance of radiative and mechanical forcing for driving the middle atmospheric circulation on Jupiter. Our model adopts a state-of-the-art radiative transfer scheme with recent observations of Jovian gas abundances and haze distribution. Assuming local radiative equilibrium, latitudinal variation of hydrocarbon abundances is not able to explain the observed latitudinal temperature variations in the mid-latitudes. With mechanical forcing parameterized as a frictional drag on zonal wind, our model produces ∼2 K latitudinal temperature variations observed in low to mid-latitudes in the troposphere and lower stratosphere, but cannot reproduce the observed 5 K temperature variations in the middle stratosphere. In the high latitudes, temperature and meridional circulation depend strongly on polar haze radiation. The simulated residual mean circulation shows either two broad equator-to-pole cells or multi-cell patterns, depending on the frictional drag timescale and polar haze properties. A more realistic wave parameterization and a better observational characterization of haze distribution and optical properties are needed to better understand latitudinal temperature distributions and circulation patterns in the middle atmosphere of Jupiter.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac1e95</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Atmospheric circulation ; Atmospheric circulation models ; Atmospheric models ; Circulation patterns ; Drag ; Dynamic models ; Haze ; Hydrocarbons ; Jupiter ; Jupiter atmosphere ; Lower stratosphere ; Meridional circulation ; Middle atmosphere ; Middle stratosphere ; Optical properties ; Parameterization ; Planetary atmospheres ; Planetary science ; Radiation ; Radiative equilibrium ; Radiative transfer ; Sciences of the Universe ; Solar system gas giant planets ; Stratosphere ; Temperature ; Temperature distribution ; Temperature variations ; Troposphere ; Two dimensional models ; Upper troposphere ; Zonal winds</subject><ispartof>The Astrophysical journal, 2021-11, Vol.921 (2), p.174</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 01, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003</citedby><cites>FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003</cites><orcidid>0000-0003-2278-6932 ; 0000-0002-6600-8270 ; 0000-0001-5019-899X ; 0000-0002-8280-3119 ; 0000-0002-1579-2616 ; 0000-0002-5100-4429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03726934$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zube, Nicholas G.</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Le, Tianhao</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Guerlet, Sandrine</creatorcontrib><creatorcontrib>Tan, Xianyu</creatorcontrib><title>Radiative-dynamical Simulation of Jupiter’s Stratosphere and Upper Troposphere</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a two-dimensional radiative-dynamical model of the combined stratosphere and upper troposphere of Jupiter to understand its temperature distribution and meridional circulation pattern. Our study highlights the importance of radiative and mechanical forcing for driving the middle atmospheric circulation on Jupiter. Our model adopts a state-of-the-art radiative transfer scheme with recent observations of Jovian gas abundances and haze distribution. Assuming local radiative equilibrium, latitudinal variation of hydrocarbon abundances is not able to explain the observed latitudinal temperature variations in the mid-latitudes. With mechanical forcing parameterized as a frictional drag on zonal wind, our model produces ∼2 K latitudinal temperature variations observed in low to mid-latitudes in the troposphere and lower stratosphere, but cannot reproduce the observed 5 K temperature variations in the middle stratosphere. In the high latitudes, temperature and meridional circulation depend strongly on polar haze radiation. The simulated residual mean circulation shows either two broad equator-to-pole cells or multi-cell patterns, depending on the frictional drag timescale and polar haze properties. A more realistic wave parameterization and a better observational characterization of haze distribution and optical properties are needed to better understand latitudinal temperature distributions and circulation patterns in the middle atmosphere of Jupiter.</description><subject>Astrophysics</subject><subject>Atmospheric circulation</subject><subject>Atmospheric circulation models</subject><subject>Atmospheric models</subject><subject>Circulation patterns</subject><subject>Drag</subject><subject>Dynamic models</subject><subject>Haze</subject><subject>Hydrocarbons</subject><subject>Jupiter</subject><subject>Jupiter atmosphere</subject><subject>Lower stratosphere</subject><subject>Meridional circulation</subject><subject>Middle atmosphere</subject><subject>Middle stratosphere</subject><subject>Optical properties</subject><subject>Parameterization</subject><subject>Planetary atmospheres</subject><subject>Planetary science</subject><subject>Radiation</subject><subject>Radiative equilibrium</subject><subject>Radiative transfer</subject><subject>Sciences of the Universe</subject><subject>Solar system gas giant planets</subject><subject>Stratosphere</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Temperature variations</subject><subject>Troposphere</subject><subject>Two dimensional models</subject><subject>Upper troposphere</subject><subject>Zonal winds</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKd3jwVvYl3aNE1zHEOdMlDcBt5C0iQsY2ti0g5282_49_wltnTMk6eP7-X5Xj4eAK4TeI-KjIwSjIo4Q5iMeJkoik_A4BidggGEMItzRD7OwUUI625NKR2At3cuDa_NTsVyX_GtKfkmmptts2lDW0VWRy-NM7XyP1_fIZrXntc2uJXyKuKVjJbOKR8tvHWH9BKcab4J6uowh2D5-LCYTOPZ69PzZDyLS1TgOuZKyAITzqngQmIlMJGoVJBqoXKBoJSK5okWMINFylOR6xTnREgtkNQlhGgIbvveFd8w582W-z2z3LDpeMZMFRoGEUlzirJd0sI3Pey8_WxUqNnaNr5q_2MppqTIUEKzloI9VXobglf62JtA1klmnVHWGWW95Pbkrj8x1v11_ov_AvscgDE</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Zube, Nicholas G.</creator><creator>Zhang, Xi</creator><creator>Li, Tao</creator><creator>Le, Tianhao</creator><creator>Li, Cheng</creator><creator>Guerlet, Sandrine</creator><creator>Tan, Xianyu</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2278-6932</orcidid><orcidid>https://orcid.org/0000-0002-6600-8270</orcidid><orcidid>https://orcid.org/0000-0001-5019-899X</orcidid><orcidid>https://orcid.org/0000-0002-8280-3119</orcidid><orcidid>https://orcid.org/0000-0002-1579-2616</orcidid><orcidid>https://orcid.org/0000-0002-5100-4429</orcidid></search><sort><creationdate>20211101</creationdate><title>Radiative-dynamical Simulation of Jupiter’s Stratosphere and Upper Troposphere</title><author>Zube, Nicholas G. ; Zhang, Xi ; Li, Tao ; Le, Tianhao ; Li, Cheng ; Guerlet, Sandrine ; Tan, Xianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Atmospheric circulation</topic><topic>Atmospheric circulation models</topic><topic>Atmospheric models</topic><topic>Circulation patterns</topic><topic>Drag</topic><topic>Dynamic models</topic><topic>Haze</topic><topic>Hydrocarbons</topic><topic>Jupiter</topic><topic>Jupiter atmosphere</topic><topic>Lower stratosphere</topic><topic>Meridional circulation</topic><topic>Middle atmosphere</topic><topic>Middle stratosphere</topic><topic>Optical properties</topic><topic>Parameterization</topic><topic>Planetary atmospheres</topic><topic>Planetary science</topic><topic>Radiation</topic><topic>Radiative equilibrium</topic><topic>Radiative transfer</topic><topic>Sciences of the Universe</topic><topic>Solar system gas giant planets</topic><topic>Stratosphere</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Temperature variations</topic><topic>Troposphere</topic><topic>Two dimensional models</topic><topic>Upper troposphere</topic><topic>Zonal winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zube, Nicholas G.</creatorcontrib><creatorcontrib>Zhang, Xi</creatorcontrib><creatorcontrib>Li, Tao</creatorcontrib><creatorcontrib>Le, Tianhao</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Guerlet, Sandrine</creatorcontrib><creatorcontrib>Tan, Xianyu</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zube, Nicholas G.</au><au>Zhang, Xi</au><au>Li, Tao</au><au>Le, Tianhao</au><au>Li, Cheng</au><au>Guerlet, Sandrine</au><au>Tan, Xianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiative-dynamical Simulation of Jupiter’s Stratosphere and Upper Troposphere</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>921</volume><issue>2</issue><spage>174</spage><pages>174-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a two-dimensional radiative-dynamical model of the combined stratosphere and upper troposphere of Jupiter to understand its temperature distribution and meridional circulation pattern. Our study highlights the importance of radiative and mechanical forcing for driving the middle atmospheric circulation on Jupiter. Our model adopts a state-of-the-art radiative transfer scheme with recent observations of Jovian gas abundances and haze distribution. Assuming local radiative equilibrium, latitudinal variation of hydrocarbon abundances is not able to explain the observed latitudinal temperature variations in the mid-latitudes. With mechanical forcing parameterized as a frictional drag on zonal wind, our model produces ∼2 K latitudinal temperature variations observed in low to mid-latitudes in the troposphere and lower stratosphere, but cannot reproduce the observed 5 K temperature variations in the middle stratosphere. In the high latitudes, temperature and meridional circulation depend strongly on polar haze radiation. The simulated residual mean circulation shows either two broad equator-to-pole cells or multi-cell patterns, depending on the frictional drag timescale and polar haze properties. A more realistic wave parameterization and a better observational characterization of haze distribution and optical properties are needed to better understand latitudinal temperature distributions and circulation patterns in the middle atmosphere of Jupiter.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac1e95</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2278-6932</orcidid><orcidid>https://orcid.org/0000-0002-6600-8270</orcidid><orcidid>https://orcid.org/0000-0001-5019-899X</orcidid><orcidid>https://orcid.org/0000-0002-8280-3119</orcidid><orcidid>https://orcid.org/0000-0002-1579-2616</orcidid><orcidid>https://orcid.org/0000-0002-5100-4429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-11, Vol.921 (2), p.174
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2597843194
source Free E-Journal (出版社公開部分のみ)
subjects Astrophysics
Atmospheric circulation
Atmospheric circulation models
Atmospheric models
Circulation patterns
Drag
Dynamic models
Haze
Hydrocarbons
Jupiter
Jupiter atmosphere
Lower stratosphere
Meridional circulation
Middle atmosphere
Middle stratosphere
Optical properties
Parameterization
Planetary atmospheres
Planetary science
Radiation
Radiative equilibrium
Radiative transfer
Sciences of the Universe
Solar system gas giant planets
Stratosphere
Temperature
Temperature distribution
Temperature variations
Troposphere
Two dimensional models
Upper troposphere
Zonal winds
title Radiative-dynamical Simulation of Jupiter’s Stratosphere and Upper Troposphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A58%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiative-dynamical%20Simulation%20of%20Jupiter%E2%80%99s%20Stratosphere%20and%20Upper%20Troposphere&rft.jtitle=The%20Astrophysical%20journal&rft.au=Zube,%20Nicholas%20G.&rft.date=2021-11-01&rft.volume=921&rft.issue=2&rft.spage=174&rft.pages=174-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac1e95&rft_dat=%3Cproquest_hal_p%3E2597843194%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-aebd857aa9babd5eb57d3ce09fbe6b30dde961fb04082a2b6f2567bdfb3dfc003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597843194&rft_id=info:pmid/&rfr_iscdi=true