Loading…

Power-law bounds for critical long-range percolation below the upper-critical dimension

We study long-range Bernoulli percolation on Z d in which each two vertices x and y are connected by an edge with probability 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger ( Commun. Math. Phys. , 2002) that if 0 < α < d then there is no infinite cluster at the critical par...

Full description

Saved in:
Bibliographic Details
Published in:Probability theory and related fields 2021-11, Vol.181 (1-3), p.533-570
Main Author: Hutchcroft, Tom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3
cites cdi_FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3
container_end_page 570
container_issue 1-3
container_start_page 533
container_title Probability theory and related fields
container_volume 181
creator Hutchcroft, Tom
description We study long-range Bernoulli percolation on Z d in which each two vertices x and y are connected by an edge with probability 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger ( Commun. Math. Phys. , 2002) that if 0 < α < d then there is no infinite cluster at the critical parameter β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent δ and two-point function exponent η .
doi_str_mv 10.1007/s00440-021-01043-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2597942678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2597942678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5vMUgZfMKALxWVI02Ts0Glq0lL890YrunN14fCdc-FD6JzCJQWQVwlACCDAKAEKghN5gBZUcEYYlOIQLYBKRRQU9BidpLQDAMYFW6DXpzC5SFoz4SqMXZ2wDxHb2AyNNS1uQ7cl0XRbh3sXbWjN0IQOV64NEx7eHB77nJNfvm72rksZOUVH3rTJnf3cJXq5vXle35PN493D-npDLC_5QApZV94WwCvBWFEZxWrJV7VQ1oMvWSGNd0YpcLX3quRSOVpnqigNZUx4w5foYt7tY3gfXRr0Loyxyy81K1ZyJVgpVabYTNkYUorO6z42exM_NAX9JVDPAnUWqL8FaplLfC6lDGcD8W_6n9YneSt0Wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2597942678</pqid></control><display><type>article</type><title>Power-law bounds for critical long-range percolation below the upper-critical dimension</title><source>EBSCOhost Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Hutchcroft, Tom</creator><creatorcontrib>Hutchcroft, Tom</creatorcontrib><description>We study long-range Bernoulli percolation on Z d in which each two vertices x and y are connected by an edge with probability 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger ( Commun. Math. Phys. , 2002) that if 0 &lt; α &lt; d then there is no infinite cluster at the critical parameter β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent δ and two-point function exponent η .</description><identifier>ISSN: 0178-8051</identifier><identifier>EISSN: 1432-2064</identifier><identifier>DOI: 10.1007/s00440-021-01043-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Apexes ; Clusters ; Economics ; Finance ; Graph theory ; Inequality ; Insurance ; Management ; Mathematical and Computational Biology ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Percolation ; Power law ; Probability ; Probability Theory and Stochastic Processes ; Quantitative Finance ; Statistics for Business ; Theorems ; Theoretical ; Upper bounds</subject><ispartof>Probability theory and related fields, 2021-11, Vol.181 (1-3), p.533-570</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3</citedby><cites>FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3</cites><orcidid>0000-0003-0061-593X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2597942678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2597942678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Hutchcroft, Tom</creatorcontrib><title>Power-law bounds for critical long-range percolation below the upper-critical dimension</title><title>Probability theory and related fields</title><addtitle>Probab. Theory Relat. Fields</addtitle><description>We study long-range Bernoulli percolation on Z d in which each two vertices x and y are connected by an edge with probability 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger ( Commun. Math. Phys. , 2002) that if 0 &lt; α &lt; d then there is no infinite cluster at the critical parameter β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent δ and two-point function exponent η .</description><subject>Apexes</subject><subject>Clusters</subject><subject>Economics</subject><subject>Finance</subject><subject>Graph theory</subject><subject>Inequality</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Percolation</subject><subject>Power law</subject><subject>Probability</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Quantitative Finance</subject><subject>Statistics for Business</subject><subject>Theorems</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0178-8051</issn><issn>1432-2064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5vMUgZfMKALxWVI02Ts0Glq0lL890YrunN14fCdc-FD6JzCJQWQVwlACCDAKAEKghN5gBZUcEYYlOIQLYBKRRQU9BidpLQDAMYFW6DXpzC5SFoz4SqMXZ2wDxHb2AyNNS1uQ7cl0XRbh3sXbWjN0IQOV64NEx7eHB77nJNfvm72rksZOUVH3rTJnf3cJXq5vXle35PN493D-npDLC_5QApZV94WwCvBWFEZxWrJV7VQ1oMvWSGNd0YpcLX3quRSOVpnqigNZUx4w5foYt7tY3gfXRr0Loyxyy81K1ZyJVgpVabYTNkYUorO6z42exM_NAX9JVDPAnUWqL8FaplLfC6lDGcD8W_6n9YneSt0Wg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Hutchcroft, Tom</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0061-593X</orcidid></search><sort><creationdate>20211101</creationdate><title>Power-law bounds for critical long-range percolation below the upper-critical dimension</title><author>Hutchcroft, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Clusters</topic><topic>Economics</topic><topic>Finance</topic><topic>Graph theory</topic><topic>Inequality</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Percolation</topic><topic>Power law</topic><topic>Probability</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Quantitative Finance</topic><topic>Statistics for Business</topic><topic>Theorems</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutchcroft, Tom</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Probability theory and related fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutchcroft, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power-law bounds for critical long-range percolation below the upper-critical dimension</atitle><jtitle>Probability theory and related fields</jtitle><stitle>Probab. Theory Relat. Fields</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>181</volume><issue>1-3</issue><spage>533</spage><epage>570</epage><pages>533-570</pages><issn>0178-8051</issn><eissn>1432-2064</eissn><abstract>We study long-range Bernoulli percolation on Z d in which each two vertices x and y are connected by an edge with probability 1 - exp ( - β ‖ x - y ‖ - d - α ) . It is a theorem of Noam Berger ( Commun. Math. Phys. , 2002) that if 0 &lt; α &lt; d then there is no infinite cluster at the critical parameter β c . We give a new, quantitative proof of this theorem establishing the power-law upper bound P β c ( | K | ≥ n ) ≤ C n - ( d - α ) / ( 2 d + α ) for every n ≥ 1 , where K is the cluster of the origin. We believe that this is the first rigorous power-law upper bound for a Bernoulli percolation model that is neither planar nor expected to exhibit mean-field critical behaviour. As part of the proof, we establish a universal inequality implying that the maximum size of a cluster in percolation on any finite graph is of the same order as its mean with high probability. We apply this inequality to derive a new rigorous hyperscaling inequality ( 2 - η ) ( δ + 1 ) ≤ d ( δ - 1 ) relating the cluster-volume exponent δ and two-point function exponent η .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00440-021-01043-7</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0003-0061-593X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0178-8051
ispartof Probability theory and related fields, 2021-11, Vol.181 (1-3), p.533-570
issn 0178-8051
1432-2064
language eng
recordid cdi_proquest_journals_2597942678
source EBSCOhost Business Source Ultimate; ABI/INFORM Global; Springer Link
subjects Apexes
Clusters
Economics
Finance
Graph theory
Inequality
Insurance
Management
Mathematical and Computational Biology
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Percolation
Power law
Probability
Probability Theory and Stochastic Processes
Quantitative Finance
Statistics for Business
Theorems
Theoretical
Upper bounds
title Power-law bounds for critical long-range percolation below the upper-critical dimension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power-law%20bounds%20for%20critical%20long-range%20percolation%20below%20the%20upper-critical%20dimension&rft.jtitle=Probability%20theory%20and%20related%20fields&rft.au=Hutchcroft,%20Tom&rft.date=2021-11-01&rft.volume=181&rft.issue=1-3&rft.spage=533&rft.epage=570&rft.pages=533-570&rft.issn=0178-8051&rft.eissn=1432-2064&rft_id=info:doi/10.1007/s00440-021-01043-7&rft_dat=%3Cproquest_cross%3E2597942678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-57dbfc503b4225ba82d739d48cf0f6257afea880edff86378e1dba856a1224fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2597942678&rft_id=info:pmid/&rfr_iscdi=true