Loading…

Electronic properties of 2D and 1D carbon allotropes based on a triphenylene structural unit

Several bottom-up chemical routes have been developed in the last few years to find ways to grow new forms of nanocarbon by devising a strategical selection of molecular precursors. Here, theoretical calculations are performed on 2D nanocarbon allotropes obtained from the fusion of triphenylene-like...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2021-11, Vol.23 (44), p.25114-25125
Main Authors: dos Santos, Mário Rocha, Silva, Paloma Vieira, Meunier, Vincent, Girão, Eduardo Costa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several bottom-up chemical routes have been developed in the last few years to find ways to grow new forms of nanocarbon by devising a strategical selection of molecular precursors. Here, theoretical calculations are performed on 2D nanocarbon allotropes obtained from the fusion of triphenylene-like units through tetragonal rings. This 2D triphenylene structure has a metallic character in a closed shell configuration, but it also features a spin-polarized semiconducting state. The behavior of the electronic properties of the system is investigated when the structure is cast into nanoribbon forms. It is found that to be metallic in the nonpolarized case, the ribbons must be sufficiently wide while narrow 1D systems are semiconducting. A lower threshold width is also needed for the emergence of a spin-polarized semiconducting configuration in these nanoribbons. These behaviors are robust as they do not depend on edge geometry and chirality, thus offering opportunities for their possible applications in nanoscale devices. Concatenation of triphenylene-like building blocks to construct a triphenylene 2D network, together with a representation of its (I) metallic spin-compensated and (II) anti-ferromagnetic spin-polarized semiconducting configurations.
ISSN:1463-9076
1463-9084
DOI:10.1039/d1cp00816a