Loading…
Simulated and Measured Output From a Composite Nonlinear Transmission Line Driven by a Blumlein Pulse Generator
Nonlinear transmission lines (NLTLs) provide a means to generate high-repetition-rate, high-power microwaves with fewer auxiliary systems than conventional sources. They are typically driven by pulse forming networks (PFNs) or Marx generators, and one would intuitively hypothesize that the microwave...
Saved in:
Published in: | IEEE transactions on plasma science 2021-11, Vol.49 (11), p.3383-3391 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613 |
container_end_page | 3391 |
container_issue | 11 |
container_start_page | 3383 |
container_title | IEEE transactions on plasma science |
container_volume | 49 |
creator | Fairbanks, Andrew J. Crawford, Travis D. Vaughan, Mary E. Garner, Allen L. |
description | Nonlinear transmission lines (NLTLs) provide a means to generate high-repetition-rate, high-power microwaves with fewer auxiliary systems than conventional sources. They are typically driven by pulse forming networks (PFNs) or Marx generators, and one would intuitively hypothesize that the microwave generation would not depend significantly on the method used to generate the input pulse to the NLTL. This study examines the implications on microwave output by using a Blumlein pulse generator with a 10-ns pulse duration and 1.5-ns rise and fall times to drive coaxial NLTLs produced using composites with nickel zinc ferrite and barium strontium titanate (BST) inclusions. Applying a 30-kV pulse to the composite NLTLs produced frequencies ranging from 1.1 to 1.3 GHz with output powers over 20 kW. The output frequencies increased with increasing volume fraction of BST. Measured results and simulations using LT SPICE showed that Blumlein modulators were insufficient to drive NLTLs to produce high-power oscillations; however, LT SPICE simulations showed that applying a standard PFN to the same NLTL produced the expected oscillations. This difference arises because the mechanism for Blumlein pulse formation cancels the shockwaves responsible for inducing microwave production by the NLTL. |
doi_str_mv | 10.1109/TPS.2021.3114449 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2598256372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9557795</ieee_id><sourcerecordid>2598256372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zkyWWm0Vqi20rkM6k0DKTFKTidB_b0qLq8e7nPseHADuMZpgjMTTZrWeEETwhGLMGBMXYIQFFYWgFb8EI4QELWiN6TW4iXGHEGYckRHwa9unTg26hcq18FOrmEJelmnYpwHOgu-hglPf7320g4Zf3nXWaRXgJigXexuj9Q4ucgZfg_3VDm4PufHSpb7T1sFV6qKGc-10UIMPt-DKqJzcnecYfM_eNtP3YrGcf0yfF0VDBB4KLirU0LqtcFXSGlFkdGmwoq0ypFSYN4pxxbnZasQJRY1hKOesxMow2paYjsHj6e4--J-k4yB3PgWXX0rCRU14SSuSKXSimuBjDNrIfbC9CgeJkTxqlVmrPGqVZ6258nCqWK31Py44ryrB6R-O1HO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598256372</pqid></control><display><type>article</type><title>Simulated and Measured Output From a Composite Nonlinear Transmission Line Driven by a Blumlein Pulse Generator</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Fairbanks, Andrew J. ; Crawford, Travis D. ; Vaughan, Mary E. ; Garner, Allen L.</creator><creatorcontrib>Fairbanks, Andrew J. ; Crawford, Travis D. ; Vaughan, Mary E. ; Garner, Allen L.</creatorcontrib><description>Nonlinear transmission lines (NLTLs) provide a means to generate high-repetition-rate, high-power microwaves with fewer auxiliary systems than conventional sources. They are typically driven by pulse forming networks (PFNs) or Marx generators, and one would intuitively hypothesize that the microwave generation would not depend significantly on the method used to generate the input pulse to the NLTL. This study examines the implications on microwave output by using a Blumlein pulse generator with a 10-ns pulse duration and 1.5-ns rise and fall times to drive coaxial NLTLs produced using composites with nickel zinc ferrite and barium strontium titanate (BST) inclusions. Applying a 30-kV pulse to the composite NLTLs produced frequencies ranging from 1.1 to 1.3 GHz with output powers over 20 kW. The output frequencies increased with increasing volume fraction of BST. Measured results and simulations using LT SPICE showed that Blumlein modulators were insufficient to drive NLTLs to produce high-power oscillations; however, LT SPICE simulations showed that applying a standard PFN to the same NLTL produced the expected oscillations. This difference arises because the mechanism for Blumlein pulse formation cancels the shockwaves responsible for inducing microwave production by the NLTL.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2021.3114449</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Barium ; Barium strontium titanates ; Blumlein ; Capacitance ; composite ; High power microwave generation ; High power microwaves ; high-power microwaves (HPMs) ; hybrid nonlinear transmission line (NLTL) ; Inclusions ; Inductance ; Marx generators ; Microwaves ; Modulators ; Nickel ; Oscillations ; Permeability ; Pulse duration ; Pulse generators ; Shock waves ; Simulation ; Strontium ; Transmission lines</subject><ispartof>IEEE transactions on plasma science, 2021-11, Vol.49 (11), p.3383-3391</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613</citedby><cites>FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613</cites><orcidid>0000-0003-0518-6919 ; 0000-0001-6934-9575 ; 0000-0001-5416-7437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9557795$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,54768</link.rule.ids></links><search><creatorcontrib>Fairbanks, Andrew J.</creatorcontrib><creatorcontrib>Crawford, Travis D.</creatorcontrib><creatorcontrib>Vaughan, Mary E.</creatorcontrib><creatorcontrib>Garner, Allen L.</creatorcontrib><title>Simulated and Measured Output From a Composite Nonlinear Transmission Line Driven by a Blumlein Pulse Generator</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Nonlinear transmission lines (NLTLs) provide a means to generate high-repetition-rate, high-power microwaves with fewer auxiliary systems than conventional sources. They are typically driven by pulse forming networks (PFNs) or Marx generators, and one would intuitively hypothesize that the microwave generation would not depend significantly on the method used to generate the input pulse to the NLTL. This study examines the implications on microwave output by using a Blumlein pulse generator with a 10-ns pulse duration and 1.5-ns rise and fall times to drive coaxial NLTLs produced using composites with nickel zinc ferrite and barium strontium titanate (BST) inclusions. Applying a 30-kV pulse to the composite NLTLs produced frequencies ranging from 1.1 to 1.3 GHz with output powers over 20 kW. The output frequencies increased with increasing volume fraction of BST. Measured results and simulations using LT SPICE showed that Blumlein modulators were insufficient to drive NLTLs to produce high-power oscillations; however, LT SPICE simulations showed that applying a standard PFN to the same NLTL produced the expected oscillations. This difference arises because the mechanism for Blumlein pulse formation cancels the shockwaves responsible for inducing microwave production by the NLTL.</description><subject>Barium</subject><subject>Barium strontium titanates</subject><subject>Blumlein</subject><subject>Capacitance</subject><subject>composite</subject><subject>High power microwave generation</subject><subject>High power microwaves</subject><subject>high-power microwaves (HPMs)</subject><subject>hybrid nonlinear transmission line (NLTL)</subject><subject>Inclusions</subject><subject>Inductance</subject><subject>Marx generators</subject><subject>Microwaves</subject><subject>Modulators</subject><subject>Nickel</subject><subject>Oscillations</subject><subject>Permeability</subject><subject>Pulse duration</subject><subject>Pulse generators</subject><subject>Shock waves</subject><subject>Simulation</subject><subject>Strontium</subject><subject>Transmission lines</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKt7wU3A9dR8zkyWWm0Vqi20rkM6k0DKTFKTidB_b0qLq8e7nPseHADuMZpgjMTTZrWeEETwhGLMGBMXYIQFFYWgFb8EI4QELWiN6TW4iXGHEGYckRHwa9unTg26hcq18FOrmEJelmnYpwHOgu-hglPf7320g4Zf3nXWaRXgJigXexuj9Q4ucgZfg_3VDm4PufHSpb7T1sFV6qKGc-10UIMPt-DKqJzcnecYfM_eNtP3YrGcf0yfF0VDBB4KLirU0LqtcFXSGlFkdGmwoq0ypFSYN4pxxbnZasQJRY1hKOesxMow2paYjsHj6e4--J-k4yB3PgWXX0rCRU14SSuSKXSimuBjDNrIfbC9CgeJkTxqlVmrPGqVZ6258nCqWK31Py44ryrB6R-O1HO0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Fairbanks, Andrew J.</creator><creator>Crawford, Travis D.</creator><creator>Vaughan, Mary E.</creator><creator>Garner, Allen L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0518-6919</orcidid><orcidid>https://orcid.org/0000-0001-6934-9575</orcidid><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid></search><sort><creationdate>20211101</creationdate><title>Simulated and Measured Output From a Composite Nonlinear Transmission Line Driven by a Blumlein Pulse Generator</title><author>Fairbanks, Andrew J. ; Crawford, Travis D. ; Vaughan, Mary E. ; Garner, Allen L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Barium</topic><topic>Barium strontium titanates</topic><topic>Blumlein</topic><topic>Capacitance</topic><topic>composite</topic><topic>High power microwave generation</topic><topic>High power microwaves</topic><topic>high-power microwaves (HPMs)</topic><topic>hybrid nonlinear transmission line (NLTL)</topic><topic>Inclusions</topic><topic>Inductance</topic><topic>Marx generators</topic><topic>Microwaves</topic><topic>Modulators</topic><topic>Nickel</topic><topic>Oscillations</topic><topic>Permeability</topic><topic>Pulse duration</topic><topic>Pulse generators</topic><topic>Shock waves</topic><topic>Simulation</topic><topic>Strontium</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fairbanks, Andrew J.</creatorcontrib><creatorcontrib>Crawford, Travis D.</creatorcontrib><creatorcontrib>Vaughan, Mary E.</creatorcontrib><creatorcontrib>Garner, Allen L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fairbanks, Andrew J.</au><au>Crawford, Travis D.</au><au>Vaughan, Mary E.</au><au>Garner, Allen L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulated and Measured Output From a Composite Nonlinear Transmission Line Driven by a Blumlein Pulse Generator</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>49</volume><issue>11</issue><spage>3383</spage><epage>3391</epage><pages>3383-3391</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Nonlinear transmission lines (NLTLs) provide a means to generate high-repetition-rate, high-power microwaves with fewer auxiliary systems than conventional sources. They are typically driven by pulse forming networks (PFNs) or Marx generators, and one would intuitively hypothesize that the microwave generation would not depend significantly on the method used to generate the input pulse to the NLTL. This study examines the implications on microwave output by using a Blumlein pulse generator with a 10-ns pulse duration and 1.5-ns rise and fall times to drive coaxial NLTLs produced using composites with nickel zinc ferrite and barium strontium titanate (BST) inclusions. Applying a 30-kV pulse to the composite NLTLs produced frequencies ranging from 1.1 to 1.3 GHz with output powers over 20 kW. The output frequencies increased with increasing volume fraction of BST. Measured results and simulations using LT SPICE showed that Blumlein modulators were insufficient to drive NLTLs to produce high-power oscillations; however, LT SPICE simulations showed that applying a standard PFN to the same NLTL produced the expected oscillations. This difference arises because the mechanism for Blumlein pulse formation cancels the shockwaves responsible for inducing microwave production by the NLTL.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2021.3114449</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0518-6919</orcidid><orcidid>https://orcid.org/0000-0001-6934-9575</orcidid><orcidid>https://orcid.org/0000-0001-5416-7437</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-3813 |
ispartof | IEEE transactions on plasma science, 2021-11, Vol.49 (11), p.3383-3391 |
issn | 0093-3813 1939-9375 |
language | eng |
recordid | cdi_proquest_journals_2598256372 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Barium Barium strontium titanates Blumlein Capacitance composite High power microwave generation High power microwaves high-power microwaves (HPMs) hybrid nonlinear transmission line (NLTL) Inclusions Inductance Marx generators Microwaves Modulators Nickel Oscillations Permeability Pulse duration Pulse generators Shock waves Simulation Strontium Transmission lines |
title | Simulated and Measured Output From a Composite Nonlinear Transmission Line Driven by a Blumlein Pulse Generator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T21%3A44%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulated%20and%20Measured%20Output%20From%20a%20Composite%20Nonlinear%20Transmission%20Line%20Driven%20by%20a%20Blumlein%20Pulse%20Generator&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Fairbanks,%20Andrew%20J.&rft.date=2021-11-01&rft.volume=49&rft.issue=11&rft.spage=3383&rft.epage=3391&rft.pages=3383-3391&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2021.3114449&rft_dat=%3Cproquest_ieee_%3E2598256372%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-5970c38d717638030fe6f1a3daf26a15ca45a55fbe05230cf4026a461af43d613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598256372&rft_id=info:pmid/&rft_ieee_id=9557795&rfr_iscdi=true |