Loading…

Optimal portfolio choices under the SVCEV model with exponential utility

In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for th...

Full description

Saved in:
Bibliographic Details
Main Authors: Peng, Beidi, Cao, Jiling, Zhang, Wenjun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2423
creator Peng, Beidi
Cao, Jiling
Zhang, Wenjun
description In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.
doi_str_mv 10.1063/5.0075535
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2598812034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598812034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2035-26f7a8bfc542f3bac832289e0b32f9b4e724267bfa7fb8457ad05d7cbbb943de3</originalsourceid><addsrcrecordid>eNp9kM1KAzEAhIMoWKsH3yDgTdia3032KKVaoeBBLd5CspvQlO0mZrNq396VFrx5mss3M8wAcI3RDKOS3vEZQoJzyk_ABHOOC1Hi8hRMEKpYQRh9PwcXfb9FiFRCyAlYPsfsd7qFMaTsQusDrDfB17aHQ9fYBPPGwpf1fLGGu9DYFn75vIH2O4bOdtmPxiH71uf9JThzuu3t1VGn4O1h8TpfFqvnx6f5_aqIBFFekNIJLY2rOSOOGl1LSoisLDKUuMowKwgjpTBOC2ck40I3iDeiNsZUjDaWTsHNITem8DHYPqttGFI3VirCKynxWMNG6vZA9bXPOvvQqZjGnWmvPkNSXB1fUrFx_8EYqd9b_wz0B8WWabk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2598812034</pqid></control><display><type>conference_proceeding</type><title>Optimal portfolio choices under the SVCEV model with exponential utility</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Peng, Beidi ; Cao, Jiling ; Zhang, Wenjun</creator><contributor>Chong, Zhi Lin ; Kong, Voon Pang ; Sek, Siok Kun ; Teh, Wen Chean ; Kasihmuddin, Mohd Shareduwan Mohd ; Hamid, Nur Nadiah Abd</contributor><creatorcontrib>Peng, Beidi ; Cao, Jiling ; Zhang, Wenjun ; Chong, Zhi Lin ; Kong, Voon Pang ; Sek, Siok Kun ; Teh, Wen Chean ; Kasihmuddin, Mohd Shareduwan Mohd ; Hamid, Nur Nadiah Abd</creatorcontrib><description>In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0075535</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic methods ; Sensitivity analysis</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2423 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Chong, Zhi Lin</contributor><contributor>Kong, Voon Pang</contributor><contributor>Sek, Siok Kun</contributor><contributor>Teh, Wen Chean</contributor><contributor>Kasihmuddin, Mohd Shareduwan Mohd</contributor><contributor>Hamid, Nur Nadiah Abd</contributor><creatorcontrib>Peng, Beidi</creatorcontrib><creatorcontrib>Cao, Jiling</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><title>Optimal portfolio choices under the SVCEV model with exponential utility</title><title>AIP Conference Proceedings</title><description>In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.</description><subject>Asymptotic methods</subject><subject>Sensitivity analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEAhIMoWKsH3yDgTdia3032KKVaoeBBLd5CspvQlO0mZrNq396VFrx5mss3M8wAcI3RDKOS3vEZQoJzyk_ABHOOC1Hi8hRMEKpYQRh9PwcXfb9FiFRCyAlYPsfsd7qFMaTsQusDrDfB17aHQ9fYBPPGwpf1fLGGu9DYFn75vIH2O4bOdtmPxiH71uf9JThzuu3t1VGn4O1h8TpfFqvnx6f5_aqIBFFekNIJLY2rOSOOGl1LSoisLDKUuMowKwgjpTBOC2ck40I3iDeiNsZUjDaWTsHNITem8DHYPqttGFI3VirCKynxWMNG6vZA9bXPOvvQqZjGnWmvPkNSXB1fUrFx_8EYqd9b_wz0B8WWabk</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Peng, Beidi</creator><creator>Cao, Jiling</creator><creator>Zhang, Wenjun</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211118</creationdate><title>Optimal portfolio choices under the SVCEV model with exponential utility</title><author>Peng, Beidi ; Cao, Jiling ; Zhang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2035-26f7a8bfc542f3bac832289e0b32f9b4e724267bfa7fb8457ad05d7cbbb943de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Beidi</creatorcontrib><creatorcontrib>Cao, Jiling</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Beidi</au><au>Cao, Jiling</au><au>Zhang, Wenjun</au><au>Chong, Zhi Lin</au><au>Kong, Voon Pang</au><au>Sek, Siok Kun</au><au>Teh, Wen Chean</au><au>Kasihmuddin, Mohd Shareduwan Mohd</au><au>Hamid, Nur Nadiah Abd</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal portfolio choices under the SVCEV model with exponential utility</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-11-18</date><risdate>2021</risdate><volume>2423</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075535</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2021, Vol.2423 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2598812034
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Asymptotic methods
Sensitivity analysis
title Optimal portfolio choices under the SVCEV model with exponential utility
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20portfolio%20choices%20under%20the%20SVCEV%20model%20with%20exponential%20utility&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Peng,%20Beidi&rft.date=2021-11-18&rft.volume=2423&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0075535&rft_dat=%3Cproquest_scita%3E2598812034%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2035-26f7a8bfc542f3bac832289e0b32f9b4e724267bfa7fb8457ad05d7cbbb943de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598812034&rft_id=info:pmid/&rfr_iscdi=true