Loading…
Optimal portfolio choices under the SVCEV model with exponential utility
In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for th...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2423 |
creator | Peng, Beidi Cao, Jiling Zhang, Wenjun |
description | In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return. |
doi_str_mv | 10.1063/5.0075535 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2598812034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598812034</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2035-26f7a8bfc542f3bac832289e0b32f9b4e724267bfa7fb8457ad05d7cbbb943de3</originalsourceid><addsrcrecordid>eNp9kM1KAzEAhIMoWKsH3yDgTdia3032KKVaoeBBLd5CspvQlO0mZrNq396VFrx5mss3M8wAcI3RDKOS3vEZQoJzyk_ABHOOC1Hi8hRMEKpYQRh9PwcXfb9FiFRCyAlYPsfsd7qFMaTsQusDrDfB17aHQ9fYBPPGwpf1fLGGu9DYFn75vIH2O4bOdtmPxiH71uf9JThzuu3t1VGn4O1h8TpfFqvnx6f5_aqIBFFekNIJLY2rOSOOGl1LSoisLDKUuMowKwgjpTBOC2ck40I3iDeiNsZUjDaWTsHNITem8DHYPqttGFI3VirCKynxWMNG6vZA9bXPOvvQqZjGnWmvPkNSXB1fUrFx_8EYqd9b_wz0B8WWabk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2598812034</pqid></control><display><type>conference_proceeding</type><title>Optimal portfolio choices under the SVCEV model with exponential utility</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Peng, Beidi ; Cao, Jiling ; Zhang, Wenjun</creator><contributor>Chong, Zhi Lin ; Kong, Voon Pang ; Sek, Siok Kun ; Teh, Wen Chean ; Kasihmuddin, Mohd Shareduwan Mohd ; Hamid, Nur Nadiah Abd</contributor><creatorcontrib>Peng, Beidi ; Cao, Jiling ; Zhang, Wenjun ; Chong, Zhi Lin ; Kong, Voon Pang ; Sek, Siok Kun ; Teh, Wen Chean ; Kasihmuddin, Mohd Shareduwan Mohd ; Hamid, Nur Nadiah Abd</creatorcontrib><description>In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0075535</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Asymptotic methods ; Sensitivity analysis</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2423 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Chong, Zhi Lin</contributor><contributor>Kong, Voon Pang</contributor><contributor>Sek, Siok Kun</contributor><contributor>Teh, Wen Chean</contributor><contributor>Kasihmuddin, Mohd Shareduwan Mohd</contributor><contributor>Hamid, Nur Nadiah Abd</contributor><creatorcontrib>Peng, Beidi</creatorcontrib><creatorcontrib>Cao, Jiling</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><title>Optimal portfolio choices under the SVCEV model with exponential utility</title><title>AIP Conference Proceedings</title><description>In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.</description><subject>Asymptotic methods</subject><subject>Sensitivity analysis</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kM1KAzEAhIMoWKsH3yDgTdia3032KKVaoeBBLd5CspvQlO0mZrNq396VFrx5mss3M8wAcI3RDKOS3vEZQoJzyk_ABHOOC1Hi8hRMEKpYQRh9PwcXfb9FiFRCyAlYPsfsd7qFMaTsQusDrDfB17aHQ9fYBPPGwpf1fLGGu9DYFn75vIH2O4bOdtmPxiH71uf9JThzuu3t1VGn4O1h8TpfFqvnx6f5_aqIBFFekNIJLY2rOSOOGl1LSoisLDKUuMowKwgjpTBOC2ck40I3iDeiNsZUjDaWTsHNITem8DHYPqttGFI3VirCKynxWMNG6vZA9bXPOvvQqZjGnWmvPkNSXB1fUrFx_8EYqd9b_wz0B8WWabk</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Peng, Beidi</creator><creator>Cao, Jiling</creator><creator>Zhang, Wenjun</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211118</creationdate><title>Optimal portfolio choices under the SVCEV model with exponential utility</title><author>Peng, Beidi ; Cao, Jiling ; Zhang, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2035-26f7a8bfc542f3bac832289e0b32f9b4e724267bfa7fb8457ad05d7cbbb943de3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Beidi</creatorcontrib><creatorcontrib>Cao, Jiling</creatorcontrib><creatorcontrib>Zhang, Wenjun</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Beidi</au><au>Cao, Jiling</au><au>Zhang, Wenjun</au><au>Chong, Zhi Lin</au><au>Kong, Voon Pang</au><au>Sek, Siok Kun</au><au>Teh, Wen Chean</au><au>Kasihmuddin, Mohd Shareduwan Mohd</au><au>Hamid, Nur Nadiah Abd</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Optimal portfolio choices under the SVCEV model with exponential utility</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-11-18</date><risdate>2021</risdate><volume>2423</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we consider optimal portfolio choices under a hybrid model of stochastic volatility and constant elasticity of variance (CEV). The Hamilton-Jacobi-Bellman (HJB) equation is derived for the exponential (CARA) utility. Applying an asymptotic method, we obtain an explicit solution for the leading optimal strategy and the first correction term perturbed by an OU process. The leading term coincides with the classical Merton’s strategy. Furthermore, we also get a practical asymptotic optimal strategy by considering the fact that the ornstein-uhlenbeck (OU) process is not observable. Finally, we conduct a sensitivity analysis on the leading optimal strategy and the first correction term against the excess return.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0075535</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP Conference Proceedings, 2021, Vol.2423 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2598812034 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Asymptotic methods Sensitivity analysis |
title | Optimal portfolio choices under the SVCEV model with exponential utility |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Optimal%20portfolio%20choices%20under%20the%20SVCEV%20model%20with%20exponential%20utility&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Peng,%20Beidi&rft.date=2021-11-18&rft.volume=2423&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0075535&rft_dat=%3Cproquest_scita%3E2598812034%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2035-26f7a8bfc542f3bac832289e0b32f9b4e724267bfa7fb8457ad05d7cbbb943de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2598812034&rft_id=info:pmid/&rfr_iscdi=true |