Loading…

Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic

The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. De...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2020-09, Vol.9 (9), p.1511
Main Authors: Zhang, Kai, Zhou, Deyun, Yang, Zhen, Zhao, Yiyang, Kong, Weiren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123
cites cdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123
container_end_page
container_issue 9
container_start_page 1511
container_title Electronics (Basel)
container_volume 9
creator Zhang, Kai
Zhou, Deyun
Yang, Zhen
Zhao, Yiyang
Kong, Weiren
description The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.
doi_str_mv 10.3390/electronics9091511
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599084667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599084667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWGr_gKeA59V87EdzrG21QkWQisdlmp3UlDa7JtlDPfrLTakHwbnMwDy8885LyDVnt1Iqdoc71NG3zuqgmOIF52dkIFilMiWUOP8zX5JRCFuWSnE5lmxAvufGWG3RRTpDbYNtHZ10nW9Bf2CgpvV0EgLG7B4CNnR2cLC3mr4jdIlcgd9gPBJ24_ZHkfWBAn1FjY11G7povf1KHLiGPifWOtilbey9owvsvQ3R6ityYWAXcPTbh-TtYb6aLrLly-PTdLLMtOQqZiCq0nAQUkspgXFhKiagHEOuAQteGp3LiptCaiOwgKrhJs_XTBbQlLriQg7JzUk3fffZY4j1tk1G0slaFEqxcV6WVaLEidK-DcGjqTtv9-APNWf1Me76f9zyB53Od1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599084667</pqid></control><display><type>article</type><title>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</title><source>Publicly Available Content Database</source><creator>Zhang, Kai ; Zhou, Deyun ; Yang, Zhen ; Zhao, Yiyang ; Kong, Weiren</creator><creatorcontrib>Zhang, Kai ; Zhou, Deyun ; Yang, Zhen ; Zhao, Yiyang ; Kong, Weiren</creatorcontrib><description>The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9091511</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Command and control ; Decision making ; Game theory ; Genetic algorithms ; Heuristic ; Heuristic methods ; Operations research ; Optimization ; Probability distribution ; Weapons</subject><ispartof>Electronics (Basel), 2020-09, Vol.9 (9), p.1511</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</citedby><cites>FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</cites><orcidid>0000-0003-4935-0688 ; 0000-0002-7400-5387 ; 0000-0002-7728-916X ; 0000-0002-1188-2120 ; 0000-0002-4935-9802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2599084667/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2599084667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhou, Deyun</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Zhao, Yiyang</creatorcontrib><creatorcontrib>Kong, Weiren</creatorcontrib><title>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</title><title>Electronics (Basel)</title><description>The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.</description><subject>Algorithms</subject><subject>Command and control</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Weapons</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkE1LAzEQhoMoWGr_gKeA59V87EdzrG21QkWQisdlmp3UlDa7JtlDPfrLTakHwbnMwDy8885LyDVnt1Iqdoc71NG3zuqgmOIF52dkIFilMiWUOP8zX5JRCFuWSnE5lmxAvufGWG3RRTpDbYNtHZ10nW9Bf2CgpvV0EgLG7B4CNnR2cLC3mr4jdIlcgd9gPBJ24_ZHkfWBAn1FjY11G7povf1KHLiGPifWOtilbey9owvsvQ3R6ityYWAXcPTbh-TtYb6aLrLly-PTdLLMtOQqZiCq0nAQUkspgXFhKiagHEOuAQteGp3LiptCaiOwgKrhJs_XTBbQlLriQg7JzUk3fffZY4j1tk1G0slaFEqxcV6WVaLEidK-DcGjqTtv9-APNWf1Me76f9zyB53Od1k</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zhang, Kai</creator><creator>Zhou, Deyun</creator><creator>Yang, Zhen</creator><creator>Zhao, Yiyang</creator><creator>Kong, Weiren</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4935-0688</orcidid><orcidid>https://orcid.org/0000-0002-7400-5387</orcidid><orcidid>https://orcid.org/0000-0002-7728-916X</orcidid><orcidid>https://orcid.org/0000-0002-1188-2120</orcidid><orcidid>https://orcid.org/0000-0002-4935-9802</orcidid></search><sort><creationdate>20200901</creationdate><title>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</title><author>Zhang, Kai ; Zhou, Deyun ; Yang, Zhen ; Zhao, Yiyang ; Kong, Weiren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Command and control</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhou, Deyun</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Zhao, Yiyang</creatorcontrib><creatorcontrib>Kong, Weiren</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Zhou, Deyun</au><au>Yang, Zhen</au><au>Zhao, Yiyang</au><au>Kong, Weiren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>9</volume><issue>9</issue><spage>1511</spage><pages>1511-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9091511</doi><orcidid>https://orcid.org/0000-0003-4935-0688</orcidid><orcidid>https://orcid.org/0000-0002-7400-5387</orcidid><orcidid>https://orcid.org/0000-0002-7728-916X</orcidid><orcidid>https://orcid.org/0000-0002-1188-2120</orcidid><orcidid>https://orcid.org/0000-0002-4935-9802</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2020-09, Vol.9 (9), p.1511
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2599084667
source Publicly Available Content Database
subjects Algorithms
Command and control
Decision making
Game theory
Genetic algorithms
Heuristic
Heuristic methods
Operations research
Optimization
Probability distribution
Weapons
title Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Decision%20Approaches%20for%20Asset-Based%20Dynamic%20Weapon%20Target%20Assignment%20by%20a%20Receding%20Horizon%20and%20Marginal%20Return%20Heuristic&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20Kai&rft.date=2020-09-01&rft.volume=9&rft.issue=9&rft.spage=1511&rft.pages=1511-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9091511&rft_dat=%3Cproquest_cross%3E2599084667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599084667&rft_id=info:pmid/&rfr_iscdi=true