Loading…
Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic
The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. De...
Saved in:
Published in: | Electronics (Basel) 2020-09, Vol.9 (9), p.1511 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123 |
container_end_page | |
container_issue | 9 |
container_start_page | 1511 |
container_title | Electronics (Basel) |
container_volume | 9 |
creator | Zhang, Kai Zhou, Deyun Yang, Zhen Zhao, Yiyang Kong, Weiren |
description | The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters. |
doi_str_mv | 10.3390/electronics9091511 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599084667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599084667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</originalsourceid><addsrcrecordid>eNplkE1LAzEQhoMoWGr_gKeA59V87EdzrG21QkWQisdlmp3UlDa7JtlDPfrLTakHwbnMwDy8885LyDVnt1Iqdoc71NG3zuqgmOIF52dkIFilMiWUOP8zX5JRCFuWSnE5lmxAvufGWG3RRTpDbYNtHZ10nW9Bf2CgpvV0EgLG7B4CNnR2cLC3mr4jdIlcgd9gPBJ24_ZHkfWBAn1FjY11G7povf1KHLiGPifWOtilbey9owvsvQ3R6ityYWAXcPTbh-TtYb6aLrLly-PTdLLMtOQqZiCq0nAQUkspgXFhKiagHEOuAQteGp3LiptCaiOwgKrhJs_XTBbQlLriQg7JzUk3fffZY4j1tk1G0slaFEqxcV6WVaLEidK-DcGjqTtv9-APNWf1Me76f9zyB53Od1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599084667</pqid></control><display><type>article</type><title>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</title><source>Publicly Available Content Database</source><creator>Zhang, Kai ; Zhou, Deyun ; Yang, Zhen ; Zhao, Yiyang ; Kong, Weiren</creator><creatorcontrib>Zhang, Kai ; Zhou, Deyun ; Yang, Zhen ; Zhao, Yiyang ; Kong, Weiren</creatorcontrib><description>The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics9091511</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Command and control ; Decision making ; Game theory ; Genetic algorithms ; Heuristic ; Heuristic methods ; Operations research ; Optimization ; Probability distribution ; Weapons</subject><ispartof>Electronics (Basel), 2020-09, Vol.9 (9), p.1511</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</citedby><cites>FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</cites><orcidid>0000-0003-4935-0688 ; 0000-0002-7400-5387 ; 0000-0002-7728-916X ; 0000-0002-1188-2120 ; 0000-0002-4935-9802</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2599084667/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2599084667?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhou, Deyun</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Zhao, Yiyang</creatorcontrib><creatorcontrib>Kong, Weiren</creatorcontrib><title>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</title><title>Electronics (Basel)</title><description>The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.</description><subject>Algorithms</subject><subject>Command and control</subject><subject>Decision making</subject><subject>Game theory</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Operations research</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Weapons</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNplkE1LAzEQhoMoWGr_gKeA59V87EdzrG21QkWQisdlmp3UlDa7JtlDPfrLTakHwbnMwDy8885LyDVnt1Iqdoc71NG3zuqgmOIF52dkIFilMiWUOP8zX5JRCFuWSnE5lmxAvufGWG3RRTpDbYNtHZ10nW9Bf2CgpvV0EgLG7B4CNnR2cLC3mr4jdIlcgd9gPBJ24_ZHkfWBAn1FjY11G7povf1KHLiGPifWOtilbey9owvsvQ3R6ityYWAXcPTbh-TtYb6aLrLly-PTdLLMtOQqZiCq0nAQUkspgXFhKiagHEOuAQteGp3LiptCaiOwgKrhJs_XTBbQlLriQg7JzUk3fffZY4j1tk1G0slaFEqxcV6WVaLEidK-DcGjqTtv9-APNWf1Me76f9zyB53Od1k</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zhang, Kai</creator><creator>Zhou, Deyun</creator><creator>Yang, Zhen</creator><creator>Zhao, Yiyang</creator><creator>Kong, Weiren</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4935-0688</orcidid><orcidid>https://orcid.org/0000-0002-7400-5387</orcidid><orcidid>https://orcid.org/0000-0002-7728-916X</orcidid><orcidid>https://orcid.org/0000-0002-1188-2120</orcidid><orcidid>https://orcid.org/0000-0002-4935-9802</orcidid></search><sort><creationdate>20200901</creationdate><title>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</title><author>Zhang, Kai ; Zhou, Deyun ; Yang, Zhen ; Zhao, Yiyang ; Kong, Weiren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Command and control</topic><topic>Decision making</topic><topic>Game theory</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Operations research</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Weapons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Zhou, Deyun</creatorcontrib><creatorcontrib>Yang, Zhen</creatorcontrib><creatorcontrib>Zhao, Yiyang</creatorcontrib><creatorcontrib>Kong, Weiren</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kai</au><au>Zhou, Deyun</au><au>Yang, Zhen</au><au>Zhao, Yiyang</au><au>Kong, Weiren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic</atitle><jtitle>Electronics (Basel)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>9</volume><issue>9</issue><spage>1511</spage><pages>1511-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The weapon-target assignment problem is a crucial decision support in a Command and Control system. As a typical operational scenario, the major asset-based dynamic weapon target assignment (A-DWTA) models and solving algorithms are challenging to reflect the actual requirement of decision maker. Deriving from the “shoot–look–shoot” principle, an “observe–orient–decide–act” loop model for A-DWTA (OODA/A-DWTA) is established. Focus on the decide phase of the OODA/A-DWTA loop, a novel A-DWTA model, which is based on the receding horizon decomposition strategy (A-DWTA/RH), is established. To solve the A-DWTA/RH efficiently, a heuristic algorithm based on statistical marginal return (HA-SMR) is designed, which proposes a reverse hierarchical idea of “asset value-target selected-weapon decision.” Experimental results show that HA-SMR solving A-DWTA/RH has advantages of real-time and robustness. The obtained decision plan can fulfill the operational mission in the fewer stages and the “radical-conservative” degree can be adjusted adaptively by parameters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics9091511</doi><orcidid>https://orcid.org/0000-0003-4935-0688</orcidid><orcidid>https://orcid.org/0000-0002-7400-5387</orcidid><orcidid>https://orcid.org/0000-0002-7728-916X</orcidid><orcidid>https://orcid.org/0000-0002-1188-2120</orcidid><orcidid>https://orcid.org/0000-0002-4935-9802</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2020-09, Vol.9 (9), p.1511 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2599084667 |
source | Publicly Available Content Database |
subjects | Algorithms Command and control Decision making Game theory Genetic algorithms Heuristic Heuristic methods Operations research Optimization Probability distribution Weapons |
title | Efficient Decision Approaches for Asset-Based Dynamic Weapon Target Assignment by a Receding Horizon and Marginal Return Heuristic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A38%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Decision%20Approaches%20for%20Asset-Based%20Dynamic%20Weapon%20Target%20Assignment%20by%20a%20Receding%20Horizon%20and%20Marginal%20Return%20Heuristic&rft.jtitle=Electronics%20(Basel)&rft.au=Zhang,%20Kai&rft.date=2020-09-01&rft.volume=9&rft.issue=9&rft.spage=1511&rft.pages=1511-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics9091511&rft_dat=%3Cproquest_cross%3E2599084667%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a276f1a23c333a012f702a68a4cae516fc4371f53cf2e5a7d1f44b035ad6c7123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599084667&rft_id=info:pmid/&rfr_iscdi=true |