Loading…

Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading

The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent & fuzzy systems 2021-01, Vol.41 (5), p.5653-5663
Main Authors: Kumar, Manish, Kumar, Bhavnesh, Rani, Asha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13
cites cdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13
container_end_page 5663
container_issue 5
container_start_page 5653
container_title Journal of intelligent & fuzzy systems
container_volume 41
creator Kumar, Manish
Kumar, Bhavnesh
Rani, Asha
description The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.
doi_str_mv 10.3233/JIFS-189885
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599114914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599114914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK6e_AMBj1LNJG0-jrKsurLowY9rSJpEu9Smpi24--vNsp7mZXiY4X0QugRywyhjt0-r-9cCpJKyOkIzkKIqpOLiOGfCywJoyU_R2TBsCAFRUTJD-tlPKRZh2u222JrBO-yHsfk2YxM7HANOcYwJh3b6xSGHZevrMTU1_vBfTd16HHufMtx94qlzPuHepLExLW6jcXl7jk6CaQd_8T_n6P1--bZ4LNYvD6vF3bqoKYexUOAt50owpgIPjjEnXQnGSqsEd5YCYZxTRRiBStAgTOUEGGZLWzoHFtgcXR3u9in-TLmC3sQpdfmlppVSAKWCMlPXB6pOcRiSD7pPuWvaaiB6b1DvDeqDQfYHcEFjvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599114914</pqid></control><display><type>article</type><title>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</title><source>Business Source Ultimate</source><creator>Kumar, Manish ; Kumar, Bhavnesh ; Rani, Asha</creator><contributor>Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Kumar, Manish ; Kumar, Bhavnesh ; Rani, Asha ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-189885</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Adaptive systems ; Artificial neural networks ; Electric vehicles ; Fuzzy logic ; Induction motors ; Inference ; Load fluctuation ; Mathematical models ; Model accuracy ; Motor rotors ; Neural networks ; Parameter sensitivity</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-01, Vol.41 (5), p.5653-5663</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</citedby><cites>FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Trajkovic, Ljiljana</contributor><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kumar, Bhavnesh</creatorcontrib><creatorcontrib>Rani, Asha</creatorcontrib><title>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</title><title>Journal of intelligent &amp; fuzzy systems</title><description>The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Electric vehicles</subject><subject>Fuzzy logic</subject><subject>Induction motors</subject><subject>Inference</subject><subject>Load fluctuation</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Motor rotors</subject><subject>Neural networks</subject><subject>Parameter sensitivity</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK6e_AMBj1LNJG0-jrKsurLowY9rSJpEu9Smpi24--vNsp7mZXiY4X0QugRywyhjt0-r-9cCpJKyOkIzkKIqpOLiOGfCywJoyU_R2TBsCAFRUTJD-tlPKRZh2u222JrBO-yHsfk2YxM7HANOcYwJh3b6xSGHZevrMTU1_vBfTd16HHufMtx94qlzPuHepLExLW6jcXl7jk6CaQd_8T_n6P1--bZ4LNYvD6vF3bqoKYexUOAt50owpgIPjjEnXQnGSqsEd5YCYZxTRRiBStAgTOUEGGZLWzoHFtgcXR3u9in-TLmC3sQpdfmlppVSAKWCMlPXB6pOcRiSD7pPuWvaaiB6b1DvDeqDQfYHcEFjvA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kumar, Manish</creator><creator>Kumar, Bhavnesh</creator><creator>Rani, Asha</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</title><author>Kumar, Manish ; Kumar, Bhavnesh ; Rani, Asha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Electric vehicles</topic><topic>Fuzzy logic</topic><topic>Induction motors</topic><topic>Inference</topic><topic>Load fluctuation</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Motor rotors</topic><topic>Neural networks</topic><topic>Parameter sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kumar, Bhavnesh</creatorcontrib><creatorcontrib>Rani, Asha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manish</au><au>Kumar, Bhavnesh</au><au>Rani, Asha</au><au>Trajkovic, Ljiljana</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>41</volume><issue>5</issue><spage>5653</spage><epage>5663</epage><pages>5653-5663</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-189885</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-01, Vol.41 (5), p.5653-5663
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2599114914
source Business Source Ultimate
subjects Adaptive systems
Artificial neural networks
Electric vehicles
Fuzzy logic
Induction motors
Inference
Load fluctuation
Mathematical models
Model accuracy
Motor rotors
Neural networks
Parameter sensitivity
title Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20based%20estimation%20of%20rotor%20flux%20for%20Electric%20Vehicle%20operating%20under%20partial%20loading&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Kumar,%20Manish&rft.date=2021-01-01&rft.volume=41&rft.issue=5&rft.spage=5653&rft.epage=5663&rft.pages=5653-5663&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-189885&rft_dat=%3Cproquest_cross%3E2599114914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599114914&rft_id=info:pmid/&rfr_iscdi=true