Loading…
Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading
The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2021-01, Vol.41 (5), p.5653-5663 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13 |
container_end_page | 5663 |
container_issue | 5 |
container_start_page | 5653 |
container_title | Journal of intelligent & fuzzy systems |
container_volume | 41 |
creator | Kumar, Manish Kumar, Bhavnesh Rani, Asha |
description | The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation. |
doi_str_mv | 10.3233/JIFS-189885 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599114914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599114914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK6e_AMBj1LNJG0-jrKsurLowY9rSJpEu9Smpi24--vNsp7mZXiY4X0QugRywyhjt0-r-9cCpJKyOkIzkKIqpOLiOGfCywJoyU_R2TBsCAFRUTJD-tlPKRZh2u222JrBO-yHsfk2YxM7HANOcYwJh3b6xSGHZevrMTU1_vBfTd16HHufMtx94qlzPuHepLExLW6jcXl7jk6CaQd_8T_n6P1--bZ4LNYvD6vF3bqoKYexUOAt50owpgIPjjEnXQnGSqsEd5YCYZxTRRiBStAgTOUEGGZLWzoHFtgcXR3u9in-TLmC3sQpdfmlppVSAKWCMlPXB6pOcRiSD7pPuWvaaiB6b1DvDeqDQfYHcEFjvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599114914</pqid></control><display><type>article</type><title>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</title><source>Business Source Ultimate</source><creator>Kumar, Manish ; Kumar, Bhavnesh ; Rani, Asha</creator><contributor>Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</contributor><creatorcontrib>Kumar, Manish ; Kumar, Bhavnesh ; Rani, Asha ; Trajkovic, Ljiljana ; El-Alfy, El-Sayed M. ; Thampi, Sabu M.</creatorcontrib><description>The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-189885</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Adaptive systems ; Artificial neural networks ; Electric vehicles ; Fuzzy logic ; Induction motors ; Inference ; Load fluctuation ; Mathematical models ; Model accuracy ; Motor rotors ; Neural networks ; Parameter sensitivity</subject><ispartof>Journal of intelligent & fuzzy systems, 2021-01, Vol.41 (5), p.5653-5663</ispartof><rights>Copyright IOS Press BV 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</citedby><cites>FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Trajkovic, Ljiljana</contributor><contributor>El-Alfy, El-Sayed M.</contributor><contributor>Thampi, Sabu M.</contributor><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kumar, Bhavnesh</creatorcontrib><creatorcontrib>Rani, Asha</creatorcontrib><title>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</title><title>Journal of intelligent & fuzzy systems</title><description>The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.</description><subject>Adaptive systems</subject><subject>Artificial neural networks</subject><subject>Electric vehicles</subject><subject>Fuzzy logic</subject><subject>Induction motors</subject><subject>Inference</subject><subject>Load fluctuation</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Motor rotors</subject><subject>Neural networks</subject><subject>Parameter sensitivity</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK6e_AMBj1LNJG0-jrKsurLowY9rSJpEu9Smpi24--vNsp7mZXiY4X0QugRywyhjt0-r-9cCpJKyOkIzkKIqpOLiOGfCywJoyU_R2TBsCAFRUTJD-tlPKRZh2u222JrBO-yHsfk2YxM7HANOcYwJh3b6xSGHZevrMTU1_vBfTd16HHufMtx94qlzPuHepLExLW6jcXl7jk6CaQd_8T_n6P1--bZ4LNYvD6vF3bqoKYexUOAt50owpgIPjjEnXQnGSqsEd5YCYZxTRRiBStAgTOUEGGZLWzoHFtgcXR3u9in-TLmC3sQpdfmlppVSAKWCMlPXB6pOcRiSD7pPuWvaaiB6b1DvDeqDQfYHcEFjvA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kumar, Manish</creator><creator>Kumar, Bhavnesh</creator><creator>Rani, Asha</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210101</creationdate><title>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</title><author>Kumar, Manish ; Kumar, Bhavnesh ; Rani, Asha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Artificial neural networks</topic><topic>Electric vehicles</topic><topic>Fuzzy logic</topic><topic>Induction motors</topic><topic>Inference</topic><topic>Load fluctuation</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Motor rotors</topic><topic>Neural networks</topic><topic>Parameter sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Manish</creatorcontrib><creatorcontrib>Kumar, Bhavnesh</creatorcontrib><creatorcontrib>Rani, Asha</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Manish</au><au>Kumar, Bhavnesh</au><au>Rani, Asha</au><au>Trajkovic, Ljiljana</au><au>El-Alfy, El-Sayed M.</au><au>Thampi, Sabu M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading</atitle><jtitle>Journal of intelligent & fuzzy systems</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>41</volume><issue>5</issue><spage>5653</spage><epage>5663</epage><pages>5653-5663</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>The primary objective of this work is to optimize the induction motor rotor flux so that maximum efficiency is attained in the facets of parameter and load variations. The conventional approaches based on loss model are sensitive to modelling accuracy and parameter variations. The problem is further aggravated due to nonlinear motor parameters in different speed regions. Therefore, this work introduces an adaptive neuro-fuzzy inference system-based rotor flux estimator for electric vehicle. The proposed estimator is an amalgamation of fuzzy inference system and artificial neural network, in which fuzzy inference system is designed using artificial neural network. The training data for neuro-fuzzy estimator is generated offline by acquiring rotor flux for different values of torque. The conventional fuzzy logic and differential calculation methods are also developed for comparative analysis. The efficacy of developed system is established by analyzing it under varying load conditions. It is revealed from the results that suggested methodology provides an improved efficiency i.e. 94.51% in comparison to 82.68% for constant flux operation.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-189885</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-1246 |
ispartof | Journal of intelligent & fuzzy systems, 2021-01, Vol.41 (5), p.5653-5663 |
issn | 1064-1246 1875-8967 |
language | eng |
recordid | cdi_proquest_journals_2599114914 |
source | Business Source Ultimate |
subjects | Adaptive systems Artificial neural networks Electric vehicles Fuzzy logic Induction motors Inference Load fluctuation Mathematical models Model accuracy Motor rotors Neural networks Parameter sensitivity |
title | Neuro-fuzzy based estimation of rotor flux for Electric Vehicle operating under partial loading |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A05%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20based%20estimation%20of%20rotor%20flux%20for%20Electric%20Vehicle%20operating%20under%20partial%20loading&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Kumar,%20Manish&rft.date=2021-01-01&rft.volume=41&rft.issue=5&rft.spage=5653&rft.epage=5663&rft.pages=5653-5663&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-189885&rft_dat=%3Cproquest_cross%3E2599114914%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-91eb6697339f6fd33d8d41ab8b976db210366290301572f7a5d71a3b4b4dd1b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599114914&rft_id=info:pmid/&rfr_iscdi=true |