Loading…
Network Intrusion Detection Based on Extended RBF Neural Network with Offline Reinforcement Learning
Network intrusion detection focuses on classifying network traffic as either normal or attack carrier. The classification is based on information extracted from the network flow packets. This is a complex classification problem with unbalanced datasets and noisy data. This work extends the classic r...
Saved in:
Published in: | IEEE access 2021-01, Vol.9, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Network intrusion detection focuses on classifying network traffic as either normal or attack carrier. The classification is based on information extracted from the network flow packets. This is a complex classification problem with unbalanced datasets and noisy data. This work extends the classic radial basis function (RBF) neural network by including it as a policy network in an offline reinforcement learning algorithm. With this approach, all parameters of the radial basis functions (along with the network weights) are learned end-to-end by gradient descent without external optimization. We further explore how additional dense hidden-layers, and the number of radial basis kernels influence the results. This novel approach is applied to five prominent intrusion detection datasets (NSL-KDD, UNSW-NB15, AWID, CICIDS2017 and CICDDOS2019) achieving better performance metrics than alternative state-of-the-art models. Each dataset provides different restrictions and challenges allowing a better validation of results. Analysis of the results shows that the proposed architectures are excellent candidates for designing classifiers with the constraints imposed by network intrusion detection. We discuss the importance of dataset imbalance and how the proposed methods may be critically important for unbalanced datasets. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3127689 |