Loading…
Assessing the role of short-term weather forecasts in fire manager tactical decision-making: a choice experiment
Background Weather plays an integral role in fire management due to the direct and indirect effects it has on fire behavior. However, fire managers may not use all information available to them during the decision-making process, instead utilizing mental shortcuts that can bias decision-making. Thus...
Saved in:
Published in: | Fire ecology 2021-11, Vol.17 (1), Article 35 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background
Weather plays an integral role in fire management due to the direct and indirect effects it has on fire behavior. However, fire managers may not use all information available to them during the decision-making process, instead utilizing mental shortcuts that can bias decision-making. Thus, it is important to evaluate if (and how) fire managers use information like weather forecasts when making tactical decisions. We explore USDA Forest Service fire manager confidence in relative humidity, precipitation, and wind models. We then use a choice experiment where key weather attributes were varied to explore how sensitive fire managers were to changes in specific weather variables when choosing to directly or indirectly attack a fire that is transitioning to extended attack.
Results
Respondents were less confident in the accuracy of wind and precipitation forecasts than relative humidity or weather forecasts more generally. The influence of weather information on the decision depended on the framing used in the choice experiment; specifically, whether respondents were told the initial strategy had been to directly or indirectly attack the fire. Across conditions, fire managers generally preferred to indirectly attack the fire. Decisions about the tactics to apply going forward were more sensitive to time in season when the fire was occurring and wind and precipitation forecasts than to other attributes.
Conclusions
The results have implications for the design of decision support tools developed to support fire management. Results suggest how fire managers’ use of fire weather information to evaluate forecast conditions and adjust future management decisions may vary depending on the management decision already in place. If fire weather-based decision support tools are to support the use of the best available information to make fire management decisions, careful attention may be needed to debias any effect of prior decisions. For example, decision support tools may encourage users to “consider the opposite,” i.e., consider if they would react differently if different initial decision with similar conditions were in place. The results also highlight the potential importance of either improving wind and precipitation forecast models or improving confidence in existing models. |
---|---|
ISSN: | 1933-9747 1933-9747 |
DOI: | 10.1186/s42408-021-00119-y |