Loading…

Pointwise Remez inequality

The standard well-known Remez inequality gives an upper estimate of the values of polynomials on [ - 1 , 1 ] if they are bounded by 1 on a subset of [ - 1 , 1 ] of fixed Lebesgue measure. The extremal solution is given by the rescaled Chebyshev polynomials for one interval. Andrievskii asked about t...

Full description

Saved in:
Bibliographic Details
Published in:Constructive approximation 2021-12, Vol.54 (3), p.529-554
Main Authors: Eichinger, B., Yuditskii, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c314t-af278df8b0831709e85a2f5c3a19c60d772a87fedbc2b91c4c90ecaa15f0f9e13
container_end_page 554
container_issue 3
container_start_page 529
container_title Constructive approximation
container_volume 54
creator Eichinger, B.
Yuditskii, P.
description The standard well-known Remez inequality gives an upper estimate of the values of polynomials on [ - 1 , 1 ] if they are bounded by 1 on a subset of [ - 1 , 1 ] of fixed Lebesgue measure. The extremal solution is given by the rescaled Chebyshev polynomials for one interval. Andrievskii asked about the maximal value of polynomials at a fixed point, if they are again bounded by 1 on a set of fixed size. We show that the extremal polynomials are either Chebyshev (one interval) or Akhiezer polynomials (two intervals) and prove Totik–Widom bounds for the extremal value, thereby providing a complete asymptotic solution to the Andrievskii problem.
doi_str_mv 10.1007/s00365-021-09562-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599617263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599617263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-af278df8b0831709e85a2f5c3a19c60d772a87fedbc2b91c4c90ecaa15f0f9e13</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoOFb_QFcF19H3ksnXUopaoaCIrkMmk8iUdqZNpkj99U4dwZ2rx4V7z4NDyBThBgHUbQbgUlBgSMEIySiekAJLzoZYwikpAJWkJVPynFzkvAJAobkqyPSla9r-s8lh9ho24WvWtGG3d-umP1ySs-jWOVz93gl5f7h_my_o8vnxaX63pJ5j2VMXmdJ11BVojgpM0MKxKDx3aLyEWinmtIqhrjyrDPrSGwjeORQRognIJ-R65G5Tt9uH3NtVt0_t8NIyYYxExSQfWmxs-dTlnEK029RsXDpYBHt0YEcHdnBgfxzYI5qPozyU24-Q_tD_rL4BUw9dtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599617263</pqid></control><display><type>article</type><title>Pointwise Remez inequality</title><source>Springer Link</source><creator>Eichinger, B. ; Yuditskii, P.</creator><creatorcontrib>Eichinger, B. ; Yuditskii, P.</creatorcontrib><description>The standard well-known Remez inequality gives an upper estimate of the values of polynomials on [ - 1 , 1 ] if they are bounded by 1 on a subset of [ - 1 , 1 ] of fixed Lebesgue measure. The extremal solution is given by the rescaled Chebyshev polynomials for one interval. Andrievskii asked about the maximal value of polynomials at a fixed point, if they are again bounded by 1 on a set of fixed size. We show that the extremal polynomials are either Chebyshev (one interval) or Akhiezer polynomials (two intervals) and prove Totik–Widom bounds for the extremal value, thereby providing a complete asymptotic solution to the Andrievskii problem.</description><identifier>ISSN: 0176-4276</identifier><identifier>EISSN: 1432-0940</identifier><identifier>DOI: 10.1007/s00365-021-09562-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Asymptotic methods ; Chebyshev approximation ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Polynomials</subject><ispartof>Constructive approximation, 2021-12, Vol.54 (3), p.529-554</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-af278df8b0831709e85a2f5c3a19c60d772a87fedbc2b91c4c90ecaa15f0f9e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Eichinger, B.</creatorcontrib><creatorcontrib>Yuditskii, P.</creatorcontrib><title>Pointwise Remez inequality</title><title>Constructive approximation</title><addtitle>Constr Approx</addtitle><description>The standard well-known Remez inequality gives an upper estimate of the values of polynomials on [ - 1 , 1 ] if they are bounded by 1 on a subset of [ - 1 , 1 ] of fixed Lebesgue measure. The extremal solution is given by the rescaled Chebyshev polynomials for one interval. Andrievskii asked about the maximal value of polynomials at a fixed point, if they are again bounded by 1 on a set of fixed size. We show that the extremal polynomials are either Chebyshev (one interval) or Akhiezer polynomials (two intervals) and prove Totik–Widom bounds for the extremal value, thereby providing a complete asymptotic solution to the Andrievskii problem.</description><subject>Analysis</subject><subject>Asymptotic methods</subject><subject>Chebyshev approximation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><issn>0176-4276</issn><issn>1432-0940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoOFb_QFcF19H3ksnXUopaoaCIrkMmk8iUdqZNpkj99U4dwZ2rx4V7z4NDyBThBgHUbQbgUlBgSMEIySiekAJLzoZYwikpAJWkJVPynFzkvAJAobkqyPSla9r-s8lh9ho24WvWtGG3d-umP1ySs-jWOVz93gl5f7h_my_o8vnxaX63pJ5j2VMXmdJ11BVojgpM0MKxKDx3aLyEWinmtIqhrjyrDPrSGwjeORQRognIJ-R65G5Tt9uH3NtVt0_t8NIyYYxExSQfWmxs-dTlnEK029RsXDpYBHt0YEcHdnBgfxzYI5qPozyU24-Q_tD_rL4BUw9dtg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Eichinger, B.</creator><creator>Yuditskii, P.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Pointwise Remez inequality</title><author>Eichinger, B. ; Yuditskii, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-af278df8b0831709e85a2f5c3a19c60d772a87fedbc2b91c4c90ecaa15f0f9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Asymptotic methods</topic><topic>Chebyshev approximation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichinger, B.</creatorcontrib><creatorcontrib>Yuditskii, P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Constructive approximation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichinger, B.</au><au>Yuditskii, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pointwise Remez inequality</atitle><jtitle>Constructive approximation</jtitle><stitle>Constr Approx</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>3</issue><spage>529</spage><epage>554</epage><pages>529-554</pages><issn>0176-4276</issn><eissn>1432-0940</eissn><abstract>The standard well-known Remez inequality gives an upper estimate of the values of polynomials on [ - 1 , 1 ] if they are bounded by 1 on a subset of [ - 1 , 1 ] of fixed Lebesgue measure. The extremal solution is given by the rescaled Chebyshev polynomials for one interval. Andrievskii asked about the maximal value of polynomials at a fixed point, if they are again bounded by 1 on a set of fixed size. We show that the extremal polynomials are either Chebyshev (one interval) or Akhiezer polynomials (two intervals) and prove Totik–Widom bounds for the extremal value, thereby providing a complete asymptotic solution to the Andrievskii problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00365-021-09562-1</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0176-4276
ispartof Constructive approximation, 2021-12, Vol.54 (3), p.529-554
issn 0176-4276
1432-0940
language eng
recordid cdi_proquest_journals_2599617263
source Springer Link
subjects Analysis
Asymptotic methods
Chebyshev approximation
Mathematics
Mathematics and Statistics
Numerical Analysis
Polynomials
title Pointwise Remez inequality
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pointwise%20Remez%20inequality&rft.jtitle=Constructive%20approximation&rft.au=Eichinger,%20B.&rft.date=2021-12-01&rft.volume=54&rft.issue=3&rft.spage=529&rft.epage=554&rft.pages=529-554&rft.issn=0176-4276&rft.eissn=1432-0940&rft_id=info:doi/10.1007/s00365-021-09562-1&rft_dat=%3Cproquest_cross%3E2599617263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-af278df8b0831709e85a2f5c3a19c60d772a87fedbc2b91c4c90ecaa15f0f9e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599617263&rft_id=info:pmid/&rfr_iscdi=true