Loading…
Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach
We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constrain...
Saved in:
Published in: | Structural and multidisciplinary optimization 2021-12, Vol.64 (6), p.3287-3309 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383 |
container_end_page | 3309 |
container_issue | 6 |
container_start_page | 3287 |
container_title | Structural and multidisciplinary optimization |
container_volume | 64 |
creator | Giraldo-Londoño, Oliver Aguiló, Miguel A. Paulino, Glaucio H. |
description | We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT-
α
method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time. |
doi_str_mv | 10.1007/s00158-021-02954-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599732708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599732708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</originalsourceid><addsrcrecordid>eNp9kL1OxDAQhCMEEsfBC1BZog6s4yR26NCJP-kkmivoLMexg0-5ONhOcTwBj41z4aejWO0W881oJ0kuMVxjAHrjAXDBUshwnKrIU3aULHCJixTnjB3_3vT1NDnzfgsADPJqkXyurRQd8sEp75G0fbyE6YNHpkfBDraz7R7ZIZid-RDB2B5ZPclHGcbIID_WWyWDaqIaCVebyLs9ava92BmJOisaf4vET4JoW6fag1GqnVJIDIOzQr6dJydadF5dfO9lsnm436ye0vXL4_Pqbp1KgquQCgK0ZKXUJdU1NEWdqabMdS6pziBXjWC5ZETKuskECCh0SXBBKgaMKkkYWSZXs21MfR-VD3xrR9fHRJ4VVUVJRmFSZbNKOuu9U5oPzuziXxwDnwrnc-E8Fs4PhfMJIjPko7hvlfuz_of6Agbph5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599732708</pqid></control><display><type>article</type><title>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</title><source>Springer Nature</source><creator>Giraldo-Londoño, Oliver ; Aguiló, Miguel A. ; Paulino, Glaucio H.</creator><creatorcontrib>Giraldo-Londoño, Oliver ; Aguiló, Miguel A. ; Paulino, Glaucio H.</creatorcontrib><description>We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT-
α
method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-021-02954-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Constraints ; Dynamic loads ; Engineering ; Engineering Design ; Equations of motion ; Lagrangian function ; Methods ; Optimization ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Topology optimization ; Variables</subject><ispartof>Structural and multidisciplinary optimization, 2021-12, Vol.64 (6), p.3287-3309</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</citedby><cites>FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</cites><orcidid>0000-0002-3493-6857 ; 0000-0001-5917-1945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Giraldo-Londoño, Oliver</creatorcontrib><creatorcontrib>Aguiló, Miguel A.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><title>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT-
α
method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Dynamic loads</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equations of motion</subject><subject>Lagrangian function</subject><subject>Methods</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><subject>Variables</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OxDAQhCMEEsfBC1BZog6s4yR26NCJP-kkmivoLMexg0-5ONhOcTwBj41z4aejWO0W881oJ0kuMVxjAHrjAXDBUshwnKrIU3aULHCJixTnjB3_3vT1NDnzfgsADPJqkXyurRQd8sEp75G0fbyE6YNHpkfBDraz7R7ZIZid-RDB2B5ZPclHGcbIID_WWyWDaqIaCVebyLs9ava92BmJOisaf4vET4JoW6fag1GqnVJIDIOzQr6dJydadF5dfO9lsnm436ye0vXL4_Pqbp1KgquQCgK0ZKXUJdU1NEWdqabMdS6pziBXjWC5ZETKuskECCh0SXBBKgaMKkkYWSZXs21MfR-VD3xrR9fHRJ4VVUVJRmFSZbNKOuu9U5oPzuziXxwDnwrnc-E8Fs4PhfMJIjPko7hvlfuz_of6Agbph5U</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Giraldo-Londoño, Oliver</creator><creator>Aguiló, Miguel A.</creator><creator>Paulino, Glaucio H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3493-6857</orcidid><orcidid>https://orcid.org/0000-0001-5917-1945</orcidid></search><sort><creationdate>20211201</creationdate><title>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</title><author>Giraldo-Londoño, Oliver ; Aguiló, Miguel A. ; Paulino, Glaucio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Dynamic loads</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equations of motion</topic><topic>Lagrangian function</topic><topic>Methods</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraldo-Londoño, Oliver</creatorcontrib><creatorcontrib>Aguiló, Miguel A.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraldo-Londoño, Oliver</au><au>Aguiló, Miguel A.</au><au>Paulino, Glaucio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>64</volume><issue>6</issue><spage>3287</spage><epage>3309</epage><pages>3287-3309</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT-
α
method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-021-02954-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3493-6857</orcidid><orcidid>https://orcid.org/0000-0001-5917-1945</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2021-12, Vol.64 (6), p.3287-3309 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2599732708 |
source | Springer Nature |
subjects | Computational Mathematics and Numerical Analysis Constraints Dynamic loads Engineering Engineering Design Equations of motion Lagrangian function Methods Optimization Research Paper Sensitivity analysis Theoretical and Applied Mechanics Topology optimization Variables |
title | Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20stress%20constraints%20in%20topology%20optimization%20of%20structures%20subjected%20to%20arbitrary%20dynamic%20loads:%20a%20stress%20aggregation-free%20approach&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Giraldo-Londo%C3%B1o,%20Oliver&rft.date=2021-12-01&rft.volume=64&rft.issue=6&rft.spage=3287&rft.epage=3309&rft.pages=3287-3309&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-021-02954-8&rft_dat=%3Cproquest_cross%3E2599732708%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599732708&rft_id=info:pmid/&rfr_iscdi=true |