Loading…

Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach

We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constrain...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization 2021-12, Vol.64 (6), p.3287-3309
Main Authors: Giraldo-Londoño, Oliver, Aguiló, Miguel A., Paulino, Glaucio H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383
cites cdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383
container_end_page 3309
container_issue 6
container_start_page 3287
container_title Structural and multidisciplinary optimization
container_volume 64
creator Giraldo-Londoño, Oliver
Aguiló, Miguel A.
Paulino, Glaucio H.
description We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT- α method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.
doi_str_mv 10.1007/s00158-021-02954-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599732708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599732708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</originalsourceid><addsrcrecordid>eNp9kL1OxDAQhCMEEsfBC1BZog6s4yR26NCJP-kkmivoLMexg0-5ONhOcTwBj41z4aejWO0W881oJ0kuMVxjAHrjAXDBUshwnKrIU3aULHCJixTnjB3_3vT1NDnzfgsADPJqkXyurRQd8sEp75G0fbyE6YNHpkfBDraz7R7ZIZid-RDB2B5ZPclHGcbIID_WWyWDaqIaCVebyLs9ava92BmJOisaf4vET4JoW6fag1GqnVJIDIOzQr6dJydadF5dfO9lsnm436ye0vXL4_Pqbp1KgquQCgK0ZKXUJdU1NEWdqabMdS6pziBXjWC5ZETKuskECCh0SXBBKgaMKkkYWSZXs21MfR-VD3xrR9fHRJ4VVUVJRmFSZbNKOuu9U5oPzuziXxwDnwrnc-E8Fs4PhfMJIjPko7hvlfuz_of6Agbph5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599732708</pqid></control><display><type>article</type><title>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</title><source>Springer Nature</source><creator>Giraldo-Londoño, Oliver ; Aguiló, Miguel A. ; Paulino, Glaucio H.</creator><creatorcontrib>Giraldo-Londoño, Oliver ; Aguiló, Miguel A. ; Paulino, Glaucio H.</creatorcontrib><description>We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT- α method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-021-02954-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computational Mathematics and Numerical Analysis ; Constraints ; Dynamic loads ; Engineering ; Engineering Design ; Equations of motion ; Lagrangian function ; Methods ; Optimization ; Research Paper ; Sensitivity analysis ; Theoretical and Applied Mechanics ; Topology optimization ; Variables</subject><ispartof>Structural and multidisciplinary optimization, 2021-12, Vol.64 (6), p.3287-3309</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</citedby><cites>FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</cites><orcidid>0000-0002-3493-6857 ; 0000-0001-5917-1945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Giraldo-Londoño, Oliver</creatorcontrib><creatorcontrib>Aguiló, Miguel A.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><title>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT- α method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constraints</subject><subject>Dynamic loads</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Equations of motion</subject><subject>Lagrangian function</subject><subject>Methods</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Sensitivity analysis</subject><subject>Theoretical and Applied Mechanics</subject><subject>Topology optimization</subject><subject>Variables</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OxDAQhCMEEsfBC1BZog6s4yR26NCJP-kkmivoLMexg0-5ONhOcTwBj41z4aejWO0W881oJ0kuMVxjAHrjAXDBUshwnKrIU3aULHCJixTnjB3_3vT1NDnzfgsADPJqkXyurRQd8sEp75G0fbyE6YNHpkfBDraz7R7ZIZid-RDB2B5ZPclHGcbIID_WWyWDaqIaCVebyLs9ava92BmJOisaf4vET4JoW6fag1GqnVJIDIOzQr6dJydadF5dfO9lsnm436ye0vXL4_Pqbp1KgquQCgK0ZKXUJdU1NEWdqabMdS6pziBXjWC5ZETKuskECCh0SXBBKgaMKkkYWSZXs21MfR-VD3xrR9fHRJ4VVUVJRmFSZbNKOuu9U5oPzuziXxwDnwrnc-E8Fs4PhfMJIjPko7hvlfuz_of6Agbph5U</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Giraldo-Londoño, Oliver</creator><creator>Aguiló, Miguel A.</creator><creator>Paulino, Glaucio H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3493-6857</orcidid><orcidid>https://orcid.org/0000-0001-5917-1945</orcidid></search><sort><creationdate>20211201</creationdate><title>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</title><author>Giraldo-Londoño, Oliver ; Aguiló, Miguel A. ; Paulino, Glaucio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constraints</topic><topic>Dynamic loads</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Equations of motion</topic><topic>Lagrangian function</topic><topic>Methods</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Sensitivity analysis</topic><topic>Theoretical and Applied Mechanics</topic><topic>Topology optimization</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giraldo-Londoño, Oliver</creatorcontrib><creatorcontrib>Aguiló, Miguel A.</creatorcontrib><creatorcontrib>Paulino, Glaucio H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giraldo-Londoño, Oliver</au><au>Aguiló, Miguel A.</au><au>Paulino, Glaucio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>64</volume><issue>6</issue><spage>3287</spage><epage>3309</epage><pages>3287-3309</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>We present an augmented Lagrangian-based approach for stress-constrained topology optimization of structures subjected to general dynamic loading. The approach renders structures that satisfy the stress constraints locally at every time step. To solve problems with a large number of stress constraints, we normalize the penalty term of the augmented Lagrangian function with respect to the total number of constraints (i.e., the number of elements in the mesh times the number of time steps). Moreover, we solve the stress-constrained problem effectively by penalizing constraints associated with high stress values more severely than those associated with low stress values. We integrate the equations of motion using the HHT- α method and conduct the sensitivity analysis consistently with this method via the “discretize-then-differentiate” approach. We present several numerical examples that elucidate the effectiveness of the approach to solve dynamic, stress-constrained problems under several loading scenarios including loads that change in magnitude and/or direction and loads that change in position as a function of time.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-021-02954-8</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3493-6857</orcidid><orcidid>https://orcid.org/0000-0001-5917-1945</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2021-12, Vol.64 (6), p.3287-3309
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2599732708
source Springer Nature
subjects Computational Mathematics and Numerical Analysis
Constraints
Dynamic loads
Engineering
Engineering Design
Equations of motion
Lagrangian function
Methods
Optimization
Research Paper
Sensitivity analysis
Theoretical and Applied Mechanics
Topology optimization
Variables
title Local stress constraints in topology optimization of structures subjected to arbitrary dynamic loads: a stress aggregation-free approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A07%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20stress%20constraints%20in%20topology%20optimization%20of%20structures%20subjected%20to%20arbitrary%20dynamic%20loads:%20a%20stress%20aggregation-free%20approach&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Giraldo-Londo%C3%B1o,%20Oliver&rft.date=2021-12-01&rft.volume=64&rft.issue=6&rft.spage=3287&rft.epage=3309&rft.pages=3287-3309&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-021-02954-8&rft_dat=%3Cproquest_cross%3E2599732708%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-a307686cf67fb0d5b2ed64f4c7f204eda84c83ccbd2a0a05f6315398087ec383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599732708&rft_id=info:pmid/&rfr_iscdi=true