Loading…

A possible mechanism of failure in dynamic uniaxial compression and the size effect

•We propose a new concept of failure under the split Hopkinson pressure bar.•Circumferential dynamic stress ensures extensive crack propagation in uniaxial compression.•Size effect in dynamic loading is based on the action of radial component of dynamic stress. It is known from the split Hopkinson p...

Full description

Saved in:
Bibliographic Details
Published in:Engineering fracture mechanics 2021-11, Vol.257, p.108005, Article 108005
Main Authors: Dyskin, Arcady V., Pasternak, Elena, Qi, Chengzhi, Xia, Chen, Qu, Xiaolei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3
cites cdi_FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3
container_end_page
container_issue
container_start_page 108005
container_title Engineering fracture mechanics
container_volume 257
creator Dyskin, Arcady V.
Pasternak, Elena
Qi, Chengzhi
Xia, Chen
Qu, Xiaolei
description •We propose a new concept of failure under the split Hopkinson pressure bar.•Circumferential dynamic stress ensures extensive crack propagation in uniaxial compression.•Size effect in dynamic loading is based on the action of radial component of dynamic stress. It is known from the split Hopkinson pressure bars experiments on dynamic uniaxial compression of brittle materials such as rocks and concrete that the strength increases with the increase of loading rate and the sample size. Friction and crack propagation do depend upon the loading rate, but this dependence would lead to the opposite effect – the strength decrease with the loading rate. Forrestal et al. (2007) showed that in dynamic loading the inertia effect induces additional, dynamic stresses. We demonstrate that (1) the circumferential component of the dynamic stress works to enable the failure mechanism based on extensive crack growth in uniaxial compression sufficient to cause splitting or spallation; (2) the radial component increases the strength by reducing the extent of wing crack growth such that higher load is required to induce failure. We propose a model of brittle dynamic failure which predicts the observed increase in dynamic compressive strength with the loading rate and sample size.
doi_str_mv 10.1016/j.engfracmech.2021.108005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599940158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794421004288</els_id><sourcerecordid>2599940158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH4w4p9iJ48exqnhJlTgAZ8txNtRR4hQ7QZRfj6tw4MhpV6uZWc2H0DUlK0oov21X4N-bYGwPdrfKSU7TXRJSnqAFlaLIREHLU7QghKZdMXaOLmJsCSGCS7JAL2u8H2J0VQf4GGG8iz0eGtwY100BsPO4PnjTO4sn78yXMx22Q78PkFyDx8bXeNwBju4bMDQN2PESnTWmi3D1O5fo7f7udfOYbZ8fnjbrbWYLpsaMg2VVXRqimKmpMJIpLkoqLGXAK2kUU7VUvODW5opTwYXKpapq1oCQprDFEt3MufswfEwQR90OU_Dppc5LpRQjtJRJpWaVDalogEbvg-tNOGhK9JGhbvUfhvrIUM8Mk3czeyHV-HQQdLQOvIXahVRU14P7R8oPmuV_4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599940158</pqid></control><display><type>article</type><title>A possible mechanism of failure in dynamic uniaxial compression and the size effect</title><source>Elsevier</source><creator>Dyskin, Arcady V. ; Pasternak, Elena ; Qi, Chengzhi ; Xia, Chen ; Qu, Xiaolei</creator><creatorcontrib>Dyskin, Arcady V. ; Pasternak, Elena ; Qi, Chengzhi ; Xia, Chen ; Qu, Xiaolei</creatorcontrib><description>•We propose a new concept of failure under the split Hopkinson pressure bar.•Circumferential dynamic stress ensures extensive crack propagation in uniaxial compression.•Size effect in dynamic loading is based on the action of radial component of dynamic stress. It is known from the split Hopkinson pressure bars experiments on dynamic uniaxial compression of brittle materials such as rocks and concrete that the strength increases with the increase of loading rate and the sample size. Friction and crack propagation do depend upon the loading rate, but this dependence would lead to the opposite effect – the strength decrease with the loading rate. Forrestal et al. (2007) showed that in dynamic loading the inertia effect induces additional, dynamic stresses. We demonstrate that (1) the circumferential component of the dynamic stress works to enable the failure mechanism based on extensive crack growth in uniaxial compression sufficient to cause splitting or spallation; (2) the radial component increases the strength by reducing the extent of wing crack growth such that higher load is required to induce failure. We propose a model of brittle dynamic failure which predicts the observed increase in dynamic compressive strength with the loading rate and sample size.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2021.108005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Brittle materials ; Compressive strength ; Crack propagation ; Dynamic loads ; Dynamic stress ; Failure mechanisms ; Loading rate ; Size effect ; Size effects ; Spallation ; Split Hopkinson pressure bars ; Uniaxial compression ; Wing crack</subject><ispartof>Engineering fracture mechanics, 2021-11, Vol.257, p.108005, Article 108005</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3</citedby><cites>FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3</cites><orcidid>0000-0002-8522-143X ; 0000-0001-5524-2566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dyskin, Arcady V.</creatorcontrib><creatorcontrib>Pasternak, Elena</creatorcontrib><creatorcontrib>Qi, Chengzhi</creatorcontrib><creatorcontrib>Xia, Chen</creatorcontrib><creatorcontrib>Qu, Xiaolei</creatorcontrib><title>A possible mechanism of failure in dynamic uniaxial compression and the size effect</title><title>Engineering fracture mechanics</title><description>•We propose a new concept of failure under the split Hopkinson pressure bar.•Circumferential dynamic stress ensures extensive crack propagation in uniaxial compression.•Size effect in dynamic loading is based on the action of radial component of dynamic stress. It is known from the split Hopkinson pressure bars experiments on dynamic uniaxial compression of brittle materials such as rocks and concrete that the strength increases with the increase of loading rate and the sample size. Friction and crack propagation do depend upon the loading rate, but this dependence would lead to the opposite effect – the strength decrease with the loading rate. Forrestal et al. (2007) showed that in dynamic loading the inertia effect induces additional, dynamic stresses. We demonstrate that (1) the circumferential component of the dynamic stress works to enable the failure mechanism based on extensive crack growth in uniaxial compression sufficient to cause splitting or spallation; (2) the radial component increases the strength by reducing the extent of wing crack growth such that higher load is required to induce failure. We propose a model of brittle dynamic failure which predicts the observed increase in dynamic compressive strength with the loading rate and sample size.</description><subject>Brittle materials</subject><subject>Compressive strength</subject><subject>Crack propagation</subject><subject>Dynamic loads</subject><subject>Dynamic stress</subject><subject>Failure mechanisms</subject><subject>Loading rate</subject><subject>Size effect</subject><subject>Size effects</subject><subject>Spallation</subject><subject>Split Hopkinson pressure bars</subject><subject>Uniaxial compression</subject><subject>Wing crack</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH4w4p9iJ48exqnhJlTgAZ8txNtRR4hQ7QZRfj6tw4MhpV6uZWc2H0DUlK0oov21X4N-bYGwPdrfKSU7TXRJSnqAFlaLIREHLU7QghKZdMXaOLmJsCSGCS7JAL2u8H2J0VQf4GGG8iz0eGtwY100BsPO4PnjTO4sn78yXMx22Q78PkFyDx8bXeNwBju4bMDQN2PESnTWmi3D1O5fo7f7udfOYbZ8fnjbrbWYLpsaMg2VVXRqimKmpMJIpLkoqLGXAK2kUU7VUvODW5opTwYXKpapq1oCQprDFEt3MufswfEwQR90OU_Dppc5LpRQjtJRJpWaVDalogEbvg-tNOGhK9JGhbvUfhvrIUM8Mk3czeyHV-HQQdLQOvIXahVRU14P7R8oPmuV_4A</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Dyskin, Arcady V.</creator><creator>Pasternak, Elena</creator><creator>Qi, Chengzhi</creator><creator>Xia, Chen</creator><creator>Qu, Xiaolei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-8522-143X</orcidid><orcidid>https://orcid.org/0000-0001-5524-2566</orcidid></search><sort><creationdate>202111</creationdate><title>A possible mechanism of failure in dynamic uniaxial compression and the size effect</title><author>Dyskin, Arcady V. ; Pasternak, Elena ; Qi, Chengzhi ; Xia, Chen ; Qu, Xiaolei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brittle materials</topic><topic>Compressive strength</topic><topic>Crack propagation</topic><topic>Dynamic loads</topic><topic>Dynamic stress</topic><topic>Failure mechanisms</topic><topic>Loading rate</topic><topic>Size effect</topic><topic>Size effects</topic><topic>Spallation</topic><topic>Split Hopkinson pressure bars</topic><topic>Uniaxial compression</topic><topic>Wing crack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dyskin, Arcady V.</creatorcontrib><creatorcontrib>Pasternak, Elena</creatorcontrib><creatorcontrib>Qi, Chengzhi</creatorcontrib><creatorcontrib>Xia, Chen</creatorcontrib><creatorcontrib>Qu, Xiaolei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dyskin, Arcady V.</au><au>Pasternak, Elena</au><au>Qi, Chengzhi</au><au>Xia, Chen</au><au>Qu, Xiaolei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A possible mechanism of failure in dynamic uniaxial compression and the size effect</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2021-11</date><risdate>2021</risdate><volume>257</volume><spage>108005</spage><pages>108005-</pages><artnum>108005</artnum><issn>0013-7944</issn><eissn>1873-7315</eissn><abstract>•We propose a new concept of failure under the split Hopkinson pressure bar.•Circumferential dynamic stress ensures extensive crack propagation in uniaxial compression.•Size effect in dynamic loading is based on the action of radial component of dynamic stress. It is known from the split Hopkinson pressure bars experiments on dynamic uniaxial compression of brittle materials such as rocks and concrete that the strength increases with the increase of loading rate and the sample size. Friction and crack propagation do depend upon the loading rate, but this dependence would lead to the opposite effect – the strength decrease with the loading rate. Forrestal et al. (2007) showed that in dynamic loading the inertia effect induces additional, dynamic stresses. We demonstrate that (1) the circumferential component of the dynamic stress works to enable the failure mechanism based on extensive crack growth in uniaxial compression sufficient to cause splitting or spallation; (2) the radial component increases the strength by reducing the extent of wing crack growth such that higher load is required to induce failure. We propose a model of brittle dynamic failure which predicts the observed increase in dynamic compressive strength with the loading rate and sample size.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2021.108005</doi><orcidid>https://orcid.org/0000-0002-8522-143X</orcidid><orcidid>https://orcid.org/0000-0001-5524-2566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2021-11, Vol.257, p.108005, Article 108005
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_journals_2599940158
source Elsevier
subjects Brittle materials
Compressive strength
Crack propagation
Dynamic loads
Dynamic stress
Failure mechanisms
Loading rate
Size effect
Size effects
Spallation
Split Hopkinson pressure bars
Uniaxial compression
Wing crack
title A possible mechanism of failure in dynamic uniaxial compression and the size effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20possible%20mechanism%20of%20failure%20in%20dynamic%20uniaxial%20compression%20and%20the%20size%20effect&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Dyskin,%20Arcady%20V.&rft.date=2021-11&rft.volume=257&rft.spage=108005&rft.pages=108005-&rft.artnum=108005&rft.issn=0013-7944&rft.eissn=1873-7315&rft_id=info:doi/10.1016/j.engfracmech.2021.108005&rft_dat=%3Cproquest_cross%3E2599940158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-6ec4bd5a094ad17a84967517c14e6b8a949d89636cc29617679289bd4fe78a3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599940158&rft_id=info:pmid/&rfr_iscdi=true