Loading…
Study of Copper/Palladium Nanoclusters Using Acoustic Particle Sizer: The preparation and non-destructive characterisation of bimetallic nanoclusters
In the present study polyvinylpyrrolidone (PVP) stabilised copper/palladium bimetallic nanoclusters were synthesised through chemical routes. The prepared Cu/Pd bimetallic nanoparticles were characterised by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD) and transmission electron...
Saved in:
Published in: | Johnson Matthey technology review 2013-07, Vol.57 (3), p.186-191 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study polyvinylpyrrolidone (PVP) stabilised copper/palladium bimetallic nanoclusters were synthesised through chemical routes. The prepared Cu/Pd bimetallic nanoparticles were characterised by ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The UV-vis absorbance band confirmed the formation of complex metal ions triggered by the complexing agent trisodium citrate. The XRD pattern indicated the formation of bimetallic nanoparticles. The TEM images of the synthesised bimetallic Cu/Pd nanoparticles showed that the size distribution of the particles was in the range 5–15 nm. An acoustic particle sizer was then used to analyse the size distribution. The results obtained by the acoustic particle sizer were consistent with the XRD and TEM analyses. These results demonstrate the potential usefulness of the acoustic particle sizer for quick and easy characterisation of nanoparticles in various catalytic, sensor and fuel cell applications
. |
---|---|
ISSN: | 0032-1400 2056-5135 |
DOI: | 10.1595/147106713X667632 |