Loading…

Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating

We propose a dual-layer split nanograting structure in crystalline silicon thin-film solar cells (TFSCs). The split nanograting is designed by introducing two partitioning factors and split times. By employing the finite-difference time-domain method, the light trapping performance and relevant para...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2021-11, Vol.60 (33), p.10312
Main Authors: Chen, Ke, Zheng, Nianhong, Wu, Sheng, He, Jinyang, Yu, Yingchun, Zheng, Hongmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3
cites cdi_FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3
container_end_page
container_issue 33
container_start_page 10312
container_title Applied optics (2004)
container_volume 60
creator Chen, Ke
Zheng, Nianhong
Wu, Sheng
He, Jinyang
Yu, Yingchun
Zheng, Hongmei
description We propose a dual-layer split nanograting structure in crystalline silicon thin-film solar cells (TFSCs). The split nanograting is designed by introducing two partitioning factors and split times. By employing the finite-difference time-domain method, the light trapping performance and relevant parameters of TFSCs are analyzed and optimized. Numerical computation of optical and electrical simulation shows that the optimal dual-layer split nanograting structure has demonstrated great enhanced light absorption compared with the planar structure. Enhancement of the light trapping effect is associated with light coupling to waveguide modes. The short-circuit current density is reached at 21.66 m A / c m 2 with an improvement of 54.6% over the planar structure. All results provide a parting thought for the design of TFSC grating structures.
doi_str_mv 10.1364/AO.443307
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600348452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600348452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3</originalsourceid><addsrcrecordid>eNotUMtKAzEADKJgrR78g4AnD6l5Z3MspT6gsAcfeAvpbtKmpLtrkir9e1fqaeYwD2YAuCV4RpjkD_N6xjljWJ2BCSVCIEakOAeTkWpEaPV5Ca5y3mHMBNdqAj6W3rumhG8HY9hsCyzJDkPoNjB0sEGvAZZt6JAPcQ9zH22CjYsxw59QttDC9mAjivboEsxDDAVuki2j-xpceBuzu_nHKXh_XL4tntGqfnpZzFeooRQXpDiWyratl0LzRnulXKWFlWvtFNXKaiG9xGsumcKVryTFTmAq28oJhQlt2BTcnXKH1H8dXC5m1x9SN1YaKseRvOKCjqr7k6pJfc7JeTOksLfpaAg2f7eZeW1Ot7Ff2oJdvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600348452</pqid></control><display><type>article</type><title>Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating</title><source>Jisc-Optica Publishing Group Read &amp; Publish Agreement 2022-2024 – E Combination 1</source><creator>Chen, Ke ; Zheng, Nianhong ; Wu, Sheng ; He, Jinyang ; Yu, Yingchun ; Zheng, Hongmei</creator><creatorcontrib>Chen, Ke ; Zheng, Nianhong ; Wu, Sheng ; He, Jinyang ; Yu, Yingchun ; Zheng, Hongmei</creatorcontrib><description>We propose a dual-layer split nanograting structure in crystalline silicon thin-film solar cells (TFSCs). The split nanograting is designed by introducing two partitioning factors and split times. By employing the finite-difference time-domain method, the light trapping performance and relevant parameters of TFSCs are analyzed and optimized. Numerical computation of optical and electrical simulation shows that the optimal dual-layer split nanograting structure has demonstrated great enhanced light absorption compared with the planar structure. Enhancement of the light trapping effect is associated with light coupling to waveguide modes. The short-circuit current density is reached at 21.66 m A / c m 2 with an improvement of 54.6% over the planar structure. All results provide a parting thought for the design of TFSC grating structures.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.443307</identifier><language>eng</language><publisher>Washington: Optical Society of America</publisher><subject>Circuits ; Electromagnetic absorption ; Finite difference time domain method ; Numerical analysis ; Photovoltaic cells ; Planar structures ; Short circuit currents ; Silicon films ; Solar cells ; Thin films ; Trapping ; Waveguides</subject><ispartof>Applied optics (2004), 2021-11, Vol.60 (33), p.10312</ispartof><rights>Copyright Optical Society of America Nov 20, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3</citedby><cites>FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3</cites><orcidid>0000-0001-6505-2096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Zheng, Nianhong</creatorcontrib><creatorcontrib>Wu, Sheng</creatorcontrib><creatorcontrib>He, Jinyang</creatorcontrib><creatorcontrib>Yu, Yingchun</creatorcontrib><creatorcontrib>Zheng, Hongmei</creatorcontrib><title>Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating</title><title>Applied optics (2004)</title><description>We propose a dual-layer split nanograting structure in crystalline silicon thin-film solar cells (TFSCs). The split nanograting is designed by introducing two partitioning factors and split times. By employing the finite-difference time-domain method, the light trapping performance and relevant parameters of TFSCs are analyzed and optimized. Numerical computation of optical and electrical simulation shows that the optimal dual-layer split nanograting structure has demonstrated great enhanced light absorption compared with the planar structure. Enhancement of the light trapping effect is associated with light coupling to waveguide modes. The short-circuit current density is reached at 21.66 m A / c m 2 with an improvement of 54.6% over the planar structure. All results provide a parting thought for the design of TFSC grating structures.</description><subject>Circuits</subject><subject>Electromagnetic absorption</subject><subject>Finite difference time domain method</subject><subject>Numerical analysis</subject><subject>Photovoltaic cells</subject><subject>Planar structures</subject><subject>Short circuit currents</subject><subject>Silicon films</subject><subject>Solar cells</subject><subject>Thin films</subject><subject>Trapping</subject><subject>Waveguides</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotUMtKAzEADKJgrR78g4AnD6l5Z3MspT6gsAcfeAvpbtKmpLtrkir9e1fqaeYwD2YAuCV4RpjkD_N6xjljWJ2BCSVCIEakOAeTkWpEaPV5Ca5y3mHMBNdqAj6W3rumhG8HY9hsCyzJDkPoNjB0sEGvAZZt6JAPcQ9zH22CjYsxw59QttDC9mAjivboEsxDDAVuki2j-xpceBuzu_nHKXh_XL4tntGqfnpZzFeooRQXpDiWyratl0LzRnulXKWFlWvtFNXKaiG9xGsumcKVryTFTmAq28oJhQlt2BTcnXKH1H8dXC5m1x9SN1YaKseRvOKCjqr7k6pJfc7JeTOksLfpaAg2f7eZeW1Ot7Ff2oJdvQ</recordid><startdate>20211120</startdate><enddate>20211120</enddate><creator>Chen, Ke</creator><creator>Zheng, Nianhong</creator><creator>Wu, Sheng</creator><creator>He, Jinyang</creator><creator>Yu, Yingchun</creator><creator>Zheng, Hongmei</creator><general>Optical Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6505-2096</orcidid></search><sort><creationdate>20211120</creationdate><title>Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating</title><author>Chen, Ke ; Zheng, Nianhong ; Wu, Sheng ; He, Jinyang ; Yu, Yingchun ; Zheng, Hongmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Circuits</topic><topic>Electromagnetic absorption</topic><topic>Finite difference time domain method</topic><topic>Numerical analysis</topic><topic>Photovoltaic cells</topic><topic>Planar structures</topic><topic>Short circuit currents</topic><topic>Silicon films</topic><topic>Solar cells</topic><topic>Thin films</topic><topic>Trapping</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Ke</creatorcontrib><creatorcontrib>Zheng, Nianhong</creatorcontrib><creatorcontrib>Wu, Sheng</creatorcontrib><creatorcontrib>He, Jinyang</creatorcontrib><creatorcontrib>Yu, Yingchun</creatorcontrib><creatorcontrib>Zheng, Hongmei</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Ke</au><au>Zheng, Nianhong</au><au>Wu, Sheng</au><au>He, Jinyang</au><au>Yu, Yingchun</au><au>Zheng, Hongmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating</atitle><jtitle>Applied optics (2004)</jtitle><date>2021-11-20</date><risdate>2021</risdate><volume>60</volume><issue>33</issue><spage>10312</spage><pages>10312-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>We propose a dual-layer split nanograting structure in crystalline silicon thin-film solar cells (TFSCs). The split nanograting is designed by introducing two partitioning factors and split times. By employing the finite-difference time-domain method, the light trapping performance and relevant parameters of TFSCs are analyzed and optimized. Numerical computation of optical and electrical simulation shows that the optimal dual-layer split nanograting structure has demonstrated great enhanced light absorption compared with the planar structure. Enhancement of the light trapping effect is associated with light coupling to waveguide modes. The short-circuit current density is reached at 21.66 m A / c m 2 with an improvement of 54.6% over the planar structure. All results provide a parting thought for the design of TFSC grating structures.</abstract><cop>Washington</cop><pub>Optical Society of America</pub><doi>10.1364/AO.443307</doi><orcidid>https://orcid.org/0000-0001-6505-2096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2021-11, Vol.60 (33), p.10312
issn 1559-128X
2155-3165
language eng
recordid cdi_proquest_journals_2600348452
source Jisc-Optica Publishing Group Read & Publish Agreement 2022-2024 – E Combination 1
subjects Circuits
Electromagnetic absorption
Finite difference time domain method
Numerical analysis
Photovoltaic cells
Planar structures
Short circuit currents
Silicon films
Solar cells
Thin films
Trapping
Waveguides
title Effective light trapping in c-Si thin-film solar cells with a dual-layer split grating
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A27%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20light%20trapping%20in%20c-Si%20thin-film%20solar%20cells%20with%20a%20dual-layer%20split%20grating&rft.jtitle=Applied%20optics%20(2004)&rft.au=Chen,%20Ke&rft.date=2021-11-20&rft.volume=60&rft.issue=33&rft.spage=10312&rft.pages=10312-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.443307&rft_dat=%3Cproquest_cross%3E2600348452%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c220t-74067addf6594c9f77e895a6b9e7297a956f60b463708f8620e5026d8e57012c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2600348452&rft_id=info:pmid/&rfr_iscdi=true