Loading…

Two-Scale Discrete Element Modeling of Gyratory Compaction of Hot Asphalt

AbstractThis paper presents a discrete element model for simulations of the compaction process of hot mixed asphalt (HMA). The model is anchored by the concept of a fine aggregate matrix (FAM), which consists of the binder and fine aggregates. In the simulation, the coarse aggregates are explicitly...

Full description

Saved in:
Bibliographic Details
Published in:Journal of engineering mechanics 2022-02, Vol.148 (2)
Main Authors: Man, Teng, Le, Jia-Ling, Marasteanu, Mihai, Hill, Kimberly M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83
cites cdi_FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83
container_end_page
container_issue 2
container_start_page
container_title Journal of engineering mechanics
container_volume 148
creator Man, Teng
Le, Jia-Ling
Marasteanu, Mihai
Hill, Kimberly M
description AbstractThis paper presents a discrete element model for simulations of the compaction process of hot mixed asphalt (HMA). The model is anchored by the concept of a fine aggregate matrix (FAM), which consists of the binder and fine aggregates. In the simulation, the coarse aggregates are explicitly modeled as composite particles. Meanwhile, the FAM is considered as the thick coating of the coarse aggregates with complex constitutive laws. Interparticle interactions include influences of (1) particle properties via Hertz–Mindlin relations; and (2) FAM properties via lubrication relationships. The lubrication relationships include a variable for viscosity for which we derive normal and tangential rate-dependent forms using rheology theory of dense granular-fluid systems, verified reasonable for our systems with the discrete element simulations and experiments with FAM. We assimilate these elements into gyratory compaction simulations of HMA of different aggregate size distributions. We compare these with experiments and find that this model is capable of capturing the measured effects of grain size distribution on the overall compaction behavior of HMA. We conclude by highlighting the advantages of this discrete element model for HMA compaction problems.
doi_str_mv 10.1061/(ASCE)EM.1943-7889.0002033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600649402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600649402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83</originalsourceid><addsrcrecordid>eNp1kEFLwzAYhoMoOKf_oehFD51fmiZdvI1at8GGh81zSJNUO7qmJhmyf-_Kpp48ffDyPu8HD0K3GEYYGH68n6zy4qFYjjBPSZyNx3wEAAkQcoYGv9k5GkBGSMwJ55foyvsNAE4ZZwM0X3_ZeKVkY6Ln2itngomKxmxNG6Kl1aap2_fIVtF072Swbh_ldttJFWrb9vHMhmjiuw_ZhGt0UcnGm5vTHaK3l2Kdz-LF63SeTxaxJCQLcUl1xqXilFDQGLDhkMgEcKXLUhtcGlZKKonSlALVCjDnGleEGp1kGFdjMkR3x93O2c-d8UFs7M61h5ciYQAs5Skkh9bTsaWc9d6ZSnSu3kq3FxhEr06IXp0olqLXJHpN4qTuALMjLL0yf_M_5P_gN6SdcjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600649402</pqid></control><display><type>article</type><title>Two-Scale Discrete Element Modeling of Gyratory Compaction of Hot Asphalt</title><source>AUTh Library subscriptions: American Society of Civil Engineers</source><creator>Man, Teng ; Le, Jia-Ling ; Marasteanu, Mihai ; Hill, Kimberly M</creator><creatorcontrib>Man, Teng ; Le, Jia-Ling ; Marasteanu, Mihai ; Hill, Kimberly M</creatorcontrib><description>AbstractThis paper presents a discrete element model for simulations of the compaction process of hot mixed asphalt (HMA). The model is anchored by the concept of a fine aggregate matrix (FAM), which consists of the binder and fine aggregates. In the simulation, the coarse aggregates are explicitly modeled as composite particles. Meanwhile, the FAM is considered as the thick coating of the coarse aggregates with complex constitutive laws. Interparticle interactions include influences of (1) particle properties via Hertz–Mindlin relations; and (2) FAM properties via lubrication relationships. The lubrication relationships include a variable for viscosity for which we derive normal and tangential rate-dependent forms using rheology theory of dense granular-fluid systems, verified reasonable for our systems with the discrete element simulations and experiments with FAM. We assimilate these elements into gyratory compaction simulations of HMA of different aggregate size distributions. We compare these with experiments and find that this model is capable of capturing the measured effects of grain size distribution on the overall compaction behavior of HMA. We conclude by highlighting the advantages of this discrete element model for HMA compaction problems.</description><identifier>ISSN: 0733-9399</identifier><identifier>EISSN: 1943-7889</identifier><identifier>DOI: 10.1061/(ASCE)EM.1943-7889.0002033</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Aggregates ; Discrete element method ; Grain size distribution ; Lubrication ; Mindlin plates ; Particle size distribution ; Particulate composites ; Rheological properties ; Rheology ; Simulation ; Technical Papers</subject><ispartof>Journal of engineering mechanics, 2022-02, Vol.148 (2)</ispartof><rights>2021 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83</citedby><cites>FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83</cites><orcidid>0000-0002-2080-9793 ; 0000-0002-9494-666X ; 0000-0001-7912-7300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)EM.1943-7889.0002033$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)EM.1943-7889.0002033$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3250,10067,27923,27924,75962,75970</link.rule.ids></links><search><creatorcontrib>Man, Teng</creatorcontrib><creatorcontrib>Le, Jia-Ling</creatorcontrib><creatorcontrib>Marasteanu, Mihai</creatorcontrib><creatorcontrib>Hill, Kimberly M</creatorcontrib><title>Two-Scale Discrete Element Modeling of Gyratory Compaction of Hot Asphalt</title><title>Journal of engineering mechanics</title><description>AbstractThis paper presents a discrete element model for simulations of the compaction process of hot mixed asphalt (HMA). The model is anchored by the concept of a fine aggregate matrix (FAM), which consists of the binder and fine aggregates. In the simulation, the coarse aggregates are explicitly modeled as composite particles. Meanwhile, the FAM is considered as the thick coating of the coarse aggregates with complex constitutive laws. Interparticle interactions include influences of (1) particle properties via Hertz–Mindlin relations; and (2) FAM properties via lubrication relationships. The lubrication relationships include a variable for viscosity for which we derive normal and tangential rate-dependent forms using rheology theory of dense granular-fluid systems, verified reasonable for our systems with the discrete element simulations and experiments with FAM. We assimilate these elements into gyratory compaction simulations of HMA of different aggregate size distributions. We compare these with experiments and find that this model is capable of capturing the measured effects of grain size distribution on the overall compaction behavior of HMA. We conclude by highlighting the advantages of this discrete element model for HMA compaction problems.</description><subject>Aggregates</subject><subject>Discrete element method</subject><subject>Grain size distribution</subject><subject>Lubrication</subject><subject>Mindlin plates</subject><subject>Particle size distribution</subject><subject>Particulate composites</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Simulation</subject><subject>Technical Papers</subject><issn>0733-9399</issn><issn>1943-7889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAYhoMoOKf_oehFD51fmiZdvI1at8GGh81zSJNUO7qmJhmyf-_Kpp48ffDyPu8HD0K3GEYYGH68n6zy4qFYjjBPSZyNx3wEAAkQcoYGv9k5GkBGSMwJ55foyvsNAE4ZZwM0X3_ZeKVkY6Ln2itngomKxmxNG6Kl1aap2_fIVtF072Swbh_ldttJFWrb9vHMhmjiuw_ZhGt0UcnGm5vTHaK3l2Kdz-LF63SeTxaxJCQLcUl1xqXilFDQGLDhkMgEcKXLUhtcGlZKKonSlALVCjDnGleEGp1kGFdjMkR3x93O2c-d8UFs7M61h5ciYQAs5Skkh9bTsaWc9d6ZSnSu3kq3FxhEr06IXp0olqLXJHpN4qTuALMjLL0yf_M_5P_gN6SdcjY</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Man, Teng</creator><creator>Le, Jia-Ling</creator><creator>Marasteanu, Mihai</creator><creator>Hill, Kimberly M</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2080-9793</orcidid><orcidid>https://orcid.org/0000-0002-9494-666X</orcidid><orcidid>https://orcid.org/0000-0001-7912-7300</orcidid></search><sort><creationdate>20220201</creationdate><title>Two-Scale Discrete Element Modeling of Gyratory Compaction of Hot Asphalt</title><author>Man, Teng ; Le, Jia-Ling ; Marasteanu, Mihai ; Hill, Kimberly M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aggregates</topic><topic>Discrete element method</topic><topic>Grain size distribution</topic><topic>Lubrication</topic><topic>Mindlin plates</topic><topic>Particle size distribution</topic><topic>Particulate composites</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Simulation</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Teng</creatorcontrib><creatorcontrib>Le, Jia-Ling</creatorcontrib><creatorcontrib>Marasteanu, Mihai</creatorcontrib><creatorcontrib>Hill, Kimberly M</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of engineering mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Teng</au><au>Le, Jia-Ling</au><au>Marasteanu, Mihai</au><au>Hill, Kimberly M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Scale Discrete Element Modeling of Gyratory Compaction of Hot Asphalt</atitle><jtitle>Journal of engineering mechanics</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>148</volume><issue>2</issue><issn>0733-9399</issn><eissn>1943-7889</eissn><abstract>AbstractThis paper presents a discrete element model for simulations of the compaction process of hot mixed asphalt (HMA). The model is anchored by the concept of a fine aggregate matrix (FAM), which consists of the binder and fine aggregates. In the simulation, the coarse aggregates are explicitly modeled as composite particles. Meanwhile, the FAM is considered as the thick coating of the coarse aggregates with complex constitutive laws. Interparticle interactions include influences of (1) particle properties via Hertz–Mindlin relations; and (2) FAM properties via lubrication relationships. The lubrication relationships include a variable for viscosity for which we derive normal and tangential rate-dependent forms using rheology theory of dense granular-fluid systems, verified reasonable for our systems with the discrete element simulations and experiments with FAM. We assimilate these elements into gyratory compaction simulations of HMA of different aggregate size distributions. We compare these with experiments and find that this model is capable of capturing the measured effects of grain size distribution on the overall compaction behavior of HMA. We conclude by highlighting the advantages of this discrete element model for HMA compaction problems.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)EM.1943-7889.0002033</doi><orcidid>https://orcid.org/0000-0002-2080-9793</orcidid><orcidid>https://orcid.org/0000-0002-9494-666X</orcidid><orcidid>https://orcid.org/0000-0001-7912-7300</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-9399
ispartof Journal of engineering mechanics, 2022-02, Vol.148 (2)
issn 0733-9399
1943-7889
language eng
recordid cdi_proquest_journals_2600649402
source AUTh Library subscriptions: American Society of Civil Engineers
subjects Aggregates
Discrete element method
Grain size distribution
Lubrication
Mindlin plates
Particle size distribution
Particulate composites
Rheological properties
Rheology
Simulation
Technical Papers
title Two-Scale Discrete Element Modeling of Gyratory Compaction of Hot Asphalt
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Scale%20Discrete%20Element%20Modeling%20of%20Gyratory%20Compaction%20of%20Hot%20Asphalt&rft.jtitle=Journal%20of%20engineering%20mechanics&rft.au=Man,%20Teng&rft.date=2022-02-01&rft.volume=148&rft.issue=2&rft.issn=0733-9399&rft.eissn=1943-7889&rft_id=info:doi/10.1061/(ASCE)EM.1943-7889.0002033&rft_dat=%3Cproquest_cross%3E2600649402%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-b5d79ac95350d101e902a201fdbbde1be6ba5a3cd5505dc0199d1f35ed2711f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2600649402&rft_id=info:pmid/&rfr_iscdi=true