Loading…

Total sulfur variability analysis of coal deposits using ordinary kriging estimation

Coal's price collapse has become a challenge in exploring and exploiting coal deposits in the mining industry. Total sulfur is one of the coal qualities sufficiently considered in the use of coal. The Geostatistics method using ordinary kriging estimation is done to determine the total sulfur v...

Full description

Saved in:
Bibliographic Details
Main Authors: Novianti, Yuniar Siska, Hakim, Romla Noor, Nurhakim, Fikri, Hafidz Noor
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2363
creator Novianti, Yuniar Siska
Hakim, Romla Noor
Nurhakim
Fikri, Hafidz Noor
description Coal's price collapse has become a challenge in exploring and exploiting coal deposits in the mining industry. Total sulfur is one of the coal qualities sufficiently considered in the use of coal. The Geostatistics method using ordinary kriging estimation is done to determine the total sulfur variation in the coal seam. Modelling was performed on every three meters of coal thickness using 193 samples on a seam of coal with a thickness of up to 30 meters. Geostatistical modelling is implemented on the coal seam, and it produces ten sulfur distribution models. The modelling results show clearly that in the model in the first layer, the distribution of sulfur is higher in value than other layers. These results expected can help select mining stages and exploration drilling activities in the context of increasing coal reserves.
doi_str_mv 10.1063/5.0061118
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2601107071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601107071</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1688-e655753f61e7d67811ccb969254c3d49da0ea5ac58f9f5741e8bc2f34c927f793</originalsourceid><addsrcrecordid>eNotkEtLxDAUhYMoOI4u_AcBd0LH3KZ5LWXwBQNuKrgLmTQZMtamJq3Qf2_HmdWBw8e9HwehWyArIJw-sBUhHADkGVoAY1AIDvwcLQhRVVFW9PMSXeW8J6RUQsgFqus4mBbnsfVjwr8mBbMNbRgmbDrTTjlkHD22cWYa18cchozHHLodjqkJnUkT_kphdyhcHsK3GULsrtGFN212N6dcoo_np3r9WmzeX97Wj5uiBy5l4ThjglHPwYmGCwlg7VZxVbLK0qZSjSHOMGOZ9MozUYGTW1t6WllVCi8UXaK7490-xZ9x_q_3cUyzd9YlJwBEEAEzdX-ksg3Dv5_u02yaJg1EH1bTTJ9Wo3_Ud19l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2601107071</pqid></control><display><type>conference_proceeding</type><title>Total sulfur variability analysis of coal deposits using ordinary kriging estimation</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Novianti, Yuniar Siska ; Hakim, Romla Noor ; Nurhakim ; Fikri, Hafidz Noor</creator><contributor>Cahyadi, Tedy Agung ; Abdullah N, Madi ; Saaid, Ismail Mohd ; Chang, Chih Hua ; Multazam, Mochammad Tanzil ; Rahim, Robbi ; Liqiang, Ma</contributor><creatorcontrib>Novianti, Yuniar Siska ; Hakim, Romla Noor ; Nurhakim ; Fikri, Hafidz Noor ; Cahyadi, Tedy Agung ; Abdullah N, Madi ; Saaid, Ismail Mohd ; Chang, Chih Hua ; Multazam, Mochammad Tanzil ; Rahim, Robbi ; Liqiang, Ma</creatorcontrib><description>Coal's price collapse has become a challenge in exploring and exploiting coal deposits in the mining industry. Total sulfur is one of the coal qualities sufficiently considered in the use of coal. The Geostatistics method using ordinary kriging estimation is done to determine the total sulfur variation in the coal seam. Modelling was performed on every three meters of coal thickness using 193 samples on a seam of coal with a thickness of up to 30 meters. Geostatistical modelling is implemented on the coal seam, and it produces ten sulfur distribution models. The modelling results show clearly that in the model in the first layer, the distribution of sulfur is higher in value than other layers. These results expected can help select mining stages and exploration drilling activities in the context of increasing coal reserves.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0061118</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coal ; Coal mining ; Exploratory drilling ; Geostatistics ; Mining industry ; Modelling ; Sulfur ; Thickness</subject><ispartof>AIP Conference Proceedings, 2021, Vol.2363 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Cahyadi, Tedy Agung</contributor><contributor>Abdullah N, Madi</contributor><contributor>Saaid, Ismail Mohd</contributor><contributor>Chang, Chih Hua</contributor><contributor>Multazam, Mochammad Tanzil</contributor><contributor>Rahim, Robbi</contributor><contributor>Liqiang, Ma</contributor><creatorcontrib>Novianti, Yuniar Siska</creatorcontrib><creatorcontrib>Hakim, Romla Noor</creatorcontrib><creatorcontrib>Nurhakim</creatorcontrib><creatorcontrib>Fikri, Hafidz Noor</creatorcontrib><title>Total sulfur variability analysis of coal deposits using ordinary kriging estimation</title><title>AIP Conference Proceedings</title><description>Coal's price collapse has become a challenge in exploring and exploiting coal deposits in the mining industry. Total sulfur is one of the coal qualities sufficiently considered in the use of coal. The Geostatistics method using ordinary kriging estimation is done to determine the total sulfur variation in the coal seam. Modelling was performed on every three meters of coal thickness using 193 samples on a seam of coal with a thickness of up to 30 meters. Geostatistical modelling is implemented on the coal seam, and it produces ten sulfur distribution models. The modelling results show clearly that in the model in the first layer, the distribution of sulfur is higher in value than other layers. These results expected can help select mining stages and exploration drilling activities in the context of increasing coal reserves.</description><subject>Coal</subject><subject>Coal mining</subject><subject>Exploratory drilling</subject><subject>Geostatistics</subject><subject>Mining industry</subject><subject>Modelling</subject><subject>Sulfur</subject><subject>Thickness</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLxDAUhYMoOI4u_AcBd0LH3KZ5LWXwBQNuKrgLmTQZMtamJq3Qf2_HmdWBw8e9HwehWyArIJw-sBUhHADkGVoAY1AIDvwcLQhRVVFW9PMSXeW8J6RUQsgFqus4mBbnsfVjwr8mBbMNbRgmbDrTTjlkHD22cWYa18cchozHHLodjqkJnUkT_kphdyhcHsK3GULsrtGFN212N6dcoo_np3r9WmzeX97Wj5uiBy5l4ThjglHPwYmGCwlg7VZxVbLK0qZSjSHOMGOZ9MozUYGTW1t6WllVCi8UXaK7490-xZ9x_q_3cUyzd9YlJwBEEAEzdX-ksg3Dv5_u02yaJg1EH1bTTJ9Wo3_Ud19l</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Novianti, Yuniar Siska</creator><creator>Hakim, Romla Noor</creator><creator>Nurhakim</creator><creator>Fikri, Hafidz Noor</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211123</creationdate><title>Total sulfur variability analysis of coal deposits using ordinary kriging estimation</title><author>Novianti, Yuniar Siska ; Hakim, Romla Noor ; Nurhakim ; Fikri, Hafidz Noor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1688-e655753f61e7d67811ccb969254c3d49da0ea5ac58f9f5741e8bc2f34c927f793</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coal</topic><topic>Coal mining</topic><topic>Exploratory drilling</topic><topic>Geostatistics</topic><topic>Mining industry</topic><topic>Modelling</topic><topic>Sulfur</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novianti, Yuniar Siska</creatorcontrib><creatorcontrib>Hakim, Romla Noor</creatorcontrib><creatorcontrib>Nurhakim</creatorcontrib><creatorcontrib>Fikri, Hafidz Noor</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novianti, Yuniar Siska</au><au>Hakim, Romla Noor</au><au>Nurhakim</au><au>Fikri, Hafidz Noor</au><au>Cahyadi, Tedy Agung</au><au>Abdullah N, Madi</au><au>Saaid, Ismail Mohd</au><au>Chang, Chih Hua</au><au>Multazam, Mochammad Tanzil</au><au>Rahim, Robbi</au><au>Liqiang, Ma</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Total sulfur variability analysis of coal deposits using ordinary kriging estimation</atitle><btitle>AIP Conference Proceedings</btitle><date>2021-11-23</date><risdate>2021</risdate><volume>2363</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Coal's price collapse has become a challenge in exploring and exploiting coal deposits in the mining industry. Total sulfur is one of the coal qualities sufficiently considered in the use of coal. The Geostatistics method using ordinary kriging estimation is done to determine the total sulfur variation in the coal seam. Modelling was performed on every three meters of coal thickness using 193 samples on a seam of coal with a thickness of up to 30 meters. Geostatistical modelling is implemented on the coal seam, and it produces ten sulfur distribution models. The modelling results show clearly that in the model in the first layer, the distribution of sulfur is higher in value than other layers. These results expected can help select mining stages and exploration drilling activities in the context of increasing coal reserves.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061118</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP Conference Proceedings, 2021, Vol.2363 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2601107071
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Coal
Coal mining
Exploratory drilling
Geostatistics
Mining industry
Modelling
Sulfur
Thickness
title Total sulfur variability analysis of coal deposits using ordinary kriging estimation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Total%20sulfur%20variability%20analysis%20of%20coal%20deposits%20using%20ordinary%20kriging%20estimation&rft.btitle=AIP%20Conference%20Proceedings&rft.au=Novianti,%20Yuniar%20Siska&rft.date=2021-11-23&rft.volume=2363&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0061118&rft_dat=%3Cproquest_scita%3E2601107071%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p1688-e655753f61e7d67811ccb969254c3d49da0ea5ac58f9f5741e8bc2f34c927f793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601107071&rft_id=info:pmid/&rfr_iscdi=true