Loading…

Loss aware post-training quantization

Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on...

Full description

Saved in:
Bibliographic Details
Published in:Machine learning 2021-12, Vol.110 (11-12), p.3245-3262
Main Authors: Nahshan, Yury, Chmiel, Brian, Baskin, Chaim, Zheltonozhskii, Evgenii, Banner, Ron, Bronstein, Alex M., Mendelson, Avi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243
cites cdi_FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243
container_end_page 3262
container_issue 11-12
container_start_page 3245
container_title Machine learning
container_volume 110
creator Nahshan, Yury
Chmiel, Brian
Baskin, Chaim
Zheltonozhskii, Evgenii
Banner, Ron
Bronstein, Alex M.
Mendelson, Avi
description Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq .
doi_str_mv 10.1007/s10994-021-06053-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2601154875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601154875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFNBPEZnMplscpSiVSh40XPIfrRs0d022SL21xtdwZunubzPOy-PEJcINwhQ3CYE57QEhRIMMMnDkZggFySBDR-LCVjL0qDiU3GW0gYAlLFmIq6XfUqz8BFiM9v2aZBDDG3XduvZbh-6oT2Eoe27c3GyCm-pufi9U_H6cP8yf5TL58XT_G4pKzI0SGd1UEVBrgaDxGWFq9qVeR_XBJUhF1BrDmQNuoYD16Uh7SpVUl3YWmmaiquxdxv73b5Jg9_0-9jll14ZQGRtC84pNaaqmMfHZuW3sX0P8dMj-G8dftThsw7_o8MfMkQjlHK4Wzfxr_of6gvW1mEu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601154875</pqid></control><display><type>article</type><title>Loss aware post-training quantization</title><source>Springer Nature</source><creator>Nahshan, Yury ; Chmiel, Brian ; Baskin, Chaim ; Zheltonozhskii, Evgenii ; Banner, Ron ; Bronstein, Alex M. ; Mendelson, Avi</creator><creatorcontrib>Nahshan, Yury ; Chmiel, Brian ; Baskin, Chaim ; Zheltonozhskii, Evgenii ; Banner, Ron ; Bronstein, Alex M. ; Mendelson, Avi</creatorcontrib><description>Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq .</description><identifier>ISSN: 0885-6125</identifier><identifier>EISSN: 1573-0565</identifier><identifier>DOI: 10.1007/s10994-021-06053-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Artificial Intelligence ; Computer Science ; Control ; Machine Learning ; Measurement ; Mechatronics ; Natural Language Processing (NLP) ; Neural networks ; Parameters ; Robotics ; Simulation and Modeling ; Training</subject><ispartof>Machine learning, 2021-12, Vol.110 (11-12), p.3245-3262</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243</citedby><cites>FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243</cites><orcidid>0000-0002-5400-9321</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Nahshan, Yury</creatorcontrib><creatorcontrib>Chmiel, Brian</creatorcontrib><creatorcontrib>Baskin, Chaim</creatorcontrib><creatorcontrib>Zheltonozhskii, Evgenii</creatorcontrib><creatorcontrib>Banner, Ron</creatorcontrib><creatorcontrib>Bronstein, Alex M.</creatorcontrib><creatorcontrib>Mendelson, Avi</creatorcontrib><title>Loss aware post-training quantization</title><title>Machine learning</title><addtitle>Mach Learn</addtitle><description>Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq .</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Control</subject><subject>Machine Learning</subject><subject>Measurement</subject><subject>Mechatronics</subject><subject>Natural Language Processing (NLP)</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Robotics</subject><subject>Simulation and Modeling</subject><subject>Training</subject><issn>0885-6125</issn><issn>1573-0565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFNBPEZnMplscpSiVSh40XPIfrRs0d022SL21xtdwZunubzPOy-PEJcINwhQ3CYE57QEhRIMMMnDkZggFySBDR-LCVjL0qDiU3GW0gYAlLFmIq6XfUqz8BFiM9v2aZBDDG3XduvZbh-6oT2Eoe27c3GyCm-pufi9U_H6cP8yf5TL58XT_G4pKzI0SGd1UEVBrgaDxGWFq9qVeR_XBJUhF1BrDmQNuoYD16Uh7SpVUl3YWmmaiquxdxv73b5Jg9_0-9jll14ZQGRtC84pNaaqmMfHZuW3sX0P8dMj-G8dftThsw7_o8MfMkQjlHK4Wzfxr_of6gvW1mEu</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Nahshan, Yury</creator><creator>Chmiel, Brian</creator><creator>Baskin, Chaim</creator><creator>Zheltonozhskii, Evgenii</creator><creator>Banner, Ron</creator><creator>Bronstein, Alex M.</creator><creator>Mendelson, Avi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5400-9321</orcidid></search><sort><creationdate>20211201</creationdate><title>Loss aware post-training quantization</title><author>Nahshan, Yury ; Chmiel, Brian ; Baskin, Chaim ; Zheltonozhskii, Evgenii ; Banner, Ron ; Bronstein, Alex M. ; Mendelson, Avi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Control</topic><topic>Machine Learning</topic><topic>Measurement</topic><topic>Mechatronics</topic><topic>Natural Language Processing (NLP)</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Robotics</topic><topic>Simulation and Modeling</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nahshan, Yury</creatorcontrib><creatorcontrib>Chmiel, Brian</creatorcontrib><creatorcontrib>Baskin, Chaim</creatorcontrib><creatorcontrib>Zheltonozhskii, Evgenii</creatorcontrib><creatorcontrib>Banner, Ron</creatorcontrib><creatorcontrib>Bronstein, Alex M.</creatorcontrib><creatorcontrib>Mendelson, Avi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Science Journals</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nahshan, Yury</au><au>Chmiel, Brian</au><au>Baskin, Chaim</au><au>Zheltonozhskii, Evgenii</au><au>Banner, Ron</au><au>Bronstein, Alex M.</au><au>Mendelson, Avi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss aware post-training quantization</atitle><jtitle>Machine learning</jtitle><stitle>Mach Learn</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>110</volume><issue>11-12</issue><spage>3245</spage><epage>3262</epage><pages>3245-3262</pages><issn>0885-6125</issn><eissn>1573-0565</eissn><abstract>Neural network quantization enables the deployment of large models on resource-constrained devices. Current post-training quantization methods fall short in terms of accuracy for INT4 (or lower) but provide reasonable accuracy for INT8 (or above). In this work, we study the effect of quantization on the structure of the loss landscape. We show that the structure is flat and separable for mild quantization, enabling straightforward post-training quantization methods to achieve good results. We show that with more aggressive quantization, the loss landscape becomes highly non-separable with steep curvature, making the selection of quantization parameters more challenging. Armed with this understanding, we design a method that quantizes the layer parameters jointly, enabling significant accuracy improvement over current post-training quantization methods. Reference implementation is available at https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10994-021-06053-z</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5400-9321</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-6125
ispartof Machine learning, 2021-12, Vol.110 (11-12), p.3245-3262
issn 0885-6125
1573-0565
language eng
recordid cdi_proquest_journals_2601154875
source Springer Nature
subjects Accuracy
Artificial Intelligence
Computer Science
Control
Machine Learning
Measurement
Mechatronics
Natural Language Processing (NLP)
Neural networks
Parameters
Robotics
Simulation and Modeling
Training
title Loss aware post-training quantization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20aware%20post-training%20quantization&rft.jtitle=Machine%20learning&rft.au=Nahshan,%20Yury&rft.date=2021-12-01&rft.volume=110&rft.issue=11-12&rft.spage=3245&rft.epage=3262&rft.pages=3245-3262&rft.issn=0885-6125&rft.eissn=1573-0565&rft_id=info:doi/10.1007/s10994-021-06053-z&rft_dat=%3Cproquest_cross%3E2601154875%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-984a27739d06135bc1fd9b0075d30c639a1445a38619e5a5db6349c2b3d78d243%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601154875&rft_id=info:pmid/&rfr_iscdi=true