Loading…
On the structure of the top homology group of the Johnson kernel
The Johnson kernel is the subgroup \(\mathcal{K}_g\) of the mapping class group \({\rm Mod}(\Sigma_{g})\) of a genus \(g\) oriented closed surface \(\Sigma_{g}\) generated by all Dehn twists about separating curves. In this paper we study the structure of the top homology group \({\rm H}_{2g-3}(\mat...
Saved in:
Published in: | arXiv.org 2023-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Spiridonov, Igor A |
description | The Johnson kernel is the subgroup \(\mathcal{K}_g\) of the mapping class group \({\rm Mod}(\Sigma_{g})\) of a genus \(g\) oriented closed surface \(\Sigma_{g}\) generated by all Dehn twists about separating curves. In this paper we study the structure of the top homology group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\). For any collection of \(2g-3\) disjoint separating curves on \(\Sigma_{g}\) one can construct the corresponding abelian cycle in the group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\); such abelian cycles will be called simplest. In this paper we describe the structure of \(\mathbb{Z}[{\rm Mod}(\Sigma_{g})/ \mathcal{K}_g]\)-module on the subgroup of \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\) generated by all simplest abelian cycles and find all relations between them. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2601165080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601165080</sourcerecordid><originalsourceid>FETCH-proquest_journals_26011650803</originalsourceid><addsrcrecordid>eNqNirsKwjAUQIMgWLT_cMG5kIeJHQVRxMXFvYjcNtSYG_MY_HtFdHc6cM6ZsEoqJZp2JeWM1SmNnHNp1lJrVbHNyUO2CCnHcs0lIlD_EZkCWLqTo-EJQ6QSfuVI1ifycMPo0S3YtL-4hPWXc7bc787bQxMiPQqm3I1Uon-nThouhNG85eq_6wUc7zjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601165080</pqid></control><display><type>article</type><title>On the structure of the top homology group of the Johnson kernel</title><source>Publicly Available Content Database</source><creator>Spiridonov, Igor A</creator><creatorcontrib>Spiridonov, Igor A</creatorcontrib><description>The Johnson kernel is the subgroup \(\mathcal{K}_g\) of the mapping class group \({\rm Mod}(\Sigma_{g})\) of a genus \(g\) oriented closed surface \(\Sigma_{g}\) generated by all Dehn twists about separating curves. In this paper we study the structure of the top homology group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\). For any collection of \(2g-3\) disjoint separating curves on \(\Sigma_{g}\) one can construct the corresponding abelian cycle in the group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\); such abelian cycles will be called simplest. In this paper we describe the structure of \(\mathbb{Z}[{\rm Mod}(\Sigma_{g})/ \mathcal{K}_g]\)-module on the subgroup of \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\) generated by all simplest abelian cycles and find all relations between them.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Kernels ; Subgroups</subject><ispartof>arXiv.org, 2023-04</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2601165080?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Spiridonov, Igor A</creatorcontrib><title>On the structure of the top homology group of the Johnson kernel</title><title>arXiv.org</title><description>The Johnson kernel is the subgroup \(\mathcal{K}_g\) of the mapping class group \({\rm Mod}(\Sigma_{g})\) of a genus \(g\) oriented closed surface \(\Sigma_{g}\) generated by all Dehn twists about separating curves. In this paper we study the structure of the top homology group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\). For any collection of \(2g-3\) disjoint separating curves on \(\Sigma_{g}\) one can construct the corresponding abelian cycle in the group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\); such abelian cycles will be called simplest. In this paper we describe the structure of \(\mathbb{Z}[{\rm Mod}(\Sigma_{g})/ \mathcal{K}_g]\)-module on the subgroup of \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\) generated by all simplest abelian cycles and find all relations between them.</description><subject>Homology</subject><subject>Kernels</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirsKwjAUQIMgWLT_cMG5kIeJHQVRxMXFvYjcNtSYG_MY_HtFdHc6cM6ZsEoqJZp2JeWM1SmNnHNp1lJrVbHNyUO2CCnHcs0lIlD_EZkCWLqTo-EJQ6QSfuVI1ifycMPo0S3YtL-4hPWXc7bc787bQxMiPQqm3I1Uon-nThouhNG85eq_6wUc7zjI</recordid><startdate>20230424</startdate><enddate>20230424</enddate><creator>Spiridonov, Igor A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230424</creationdate><title>On the structure of the top homology group of the Johnson kernel</title><author>Spiridonov, Igor A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26011650803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Homology</topic><topic>Kernels</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Spiridonov, Igor A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spiridonov, Igor A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the structure of the top homology group of the Johnson kernel</atitle><jtitle>arXiv.org</jtitle><date>2023-04-24</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>The Johnson kernel is the subgroup \(\mathcal{K}_g\) of the mapping class group \({\rm Mod}(\Sigma_{g})\) of a genus \(g\) oriented closed surface \(\Sigma_{g}\) generated by all Dehn twists about separating curves. In this paper we study the structure of the top homology group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\). For any collection of \(2g-3\) disjoint separating curves on \(\Sigma_{g}\) one can construct the corresponding abelian cycle in the group \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\); such abelian cycles will be called simplest. In this paper we describe the structure of \(\mathbb{Z}[{\rm Mod}(\Sigma_{g})/ \mathcal{K}_g]\)-module on the subgroup of \({\rm H}_{2g-3}(\mathcal{K}_g, \mathbb{Z})\) generated by all simplest abelian cycles and find all relations between them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2601165080 |
source | Publicly Available Content Database |
subjects | Homology Kernels Subgroups |
title | On the structure of the top homology group of the Johnson kernel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20structure%20of%20the%20top%20homology%20group%20of%20the%20Johnson%20kernel&rft.jtitle=arXiv.org&rft.au=Spiridonov,%20Igor%20A&rft.date=2023-04-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2601165080%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26011650803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2601165080&rft_id=info:pmid/&rfr_iscdi=true |