Loading…

Detection of Mental Stress through EEG Signal in Virtual Reality Environment

This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompan...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-11, Vol.10 (22), p.2840
Main Authors: Kamińska, Dorota, Smółka, Krzysztof, Zwoliński, Grzegorz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates the use of an electroencephalogram (EEG) signal to classify a subject’s stress level while using virtual reality (VR). For this purpose, we designed an acquisition protocol based on alternating relaxing and stressful scenes in the form of a VR interactive simulation, accompanied by an EEG headset to monitor the subject’s psycho-physical condition. Relaxation scenes were developed based on scenarios created for psychotherapy treatment utilizing bilateral stimulation, while the Stroop test worked as a stressor. The experiment was conducted on a group of 28 healthy adult volunteers (office workers), participating in a VR session. Subjects’ EEG signal was continuously monitored using the EMOTIV EPOC Flex wireless EEG head cap system. After the session, volunteers were asked to re-fill questionnaires regarding the current stress level and mood. Then, we classified the stress level using a convolutional neural network (CNN) and compared the classification performance with conventional machine learning algorithms. The best results were obtained considering all brain waves (96.42%) with a multilayer perceptron (MLP) and Support Vector Machine (SVM) classifiers.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics10222840