Loading…

Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice

The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outli...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-11, Vol.10 (22), p.2878
Main Authors: Ivanova, Malinka, Petkova, Petya, Petkov, Nikolay
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3
cites cdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3
container_end_page
container_issue 22
container_start_page 2878
container_title Electronics (Basel)
container_volume 10
creator Ivanova, Malinka
Petkova, Petya
Petkov, Nikolay
description The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.
doi_str_mv 10.3390/electronics10222878
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602041537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602041537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</originalsourceid><addsrcrecordid>eNptkEFLw0AUhBdRsNT-Ai8LnqNv9yXZrLdSWi1EFNFz2Gxf6pa4ibvpof31tlTQg3OZOXzMwDB2LeAWUcMdtWSH0HlnowApZaGKMzaSoHSipZbnf_Ilm8S4gYO0wAJhxF6fjP1wnnhJJnjn19z4FV9s9_sdL7u1s9x5Pv9duOfTvm93R3DpB2pbtyZv6Ui9BGMHZ-mKXTSmjTT58TF7X8zfZo9J-fywnE3LxKKUQ5JZyEHbIjUikwZTrI01BilfoQJolKCm0UCFygopdWOVzbIcocYV1UqnNY7Zzam3D93XluJQbbpt8IfJSuYgIRUZqgOFJ8qGLsZATdUH92nCrhJQHf-r_vkPvwGb22YS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602041537</pqid></control><display><type>article</type><title>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</title><source>Publicly Available Content Database</source><creator>Ivanova, Malinka ; Petkova, Petya ; Petkov, Nikolay</creator><creatorcontrib>Ivanova, Malinka ; Petkova, Petya ; Petkov, Nikolay</creatorcontrib><description>The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10222878</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Bibliographic records ; Bibliometrics ; Collaboration ; Electronics ; Engineering ; Fuzzy logic ; Hirsch index ; Keywords ; Machine learning ; Science ; Software</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (22), p.2878</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</citedby><cites>FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</cites><orcidid>0000-0002-8474-6226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602041537/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602041537?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ivanova, Malinka</creatorcontrib><creatorcontrib>Petkova, Petya</creatorcontrib><creatorcontrib>Petkov, Nikolay</creatorcontrib><title>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</title><title>Electronics (Basel)</title><description>The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bibliographic records</subject><subject>Bibliometrics</subject><subject>Collaboration</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Hirsch index</subject><subject>Keywords</subject><subject>Machine learning</subject><subject>Science</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkEFLw0AUhBdRsNT-Ai8LnqNv9yXZrLdSWi1EFNFz2Gxf6pa4ibvpof31tlTQg3OZOXzMwDB2LeAWUcMdtWSH0HlnowApZaGKMzaSoHSipZbnf_Ilm8S4gYO0wAJhxF6fjP1wnnhJJnjn19z4FV9s9_sdL7u1s9x5Pv9duOfTvm93R3DpB2pbtyZv6Ui9BGMHZ-mKXTSmjTT58TF7X8zfZo9J-fywnE3LxKKUQ5JZyEHbIjUikwZTrI01BilfoQJolKCm0UCFygopdWOVzbIcocYV1UqnNY7Zzam3D93XluJQbbpt8IfJSuYgIRUZqgOFJ8qGLsZATdUH92nCrhJQHf-r_vkPvwGb22YS</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ivanova, Malinka</creator><creator>Petkova, Petya</creator><creator>Petkov, Nikolay</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8474-6226</orcidid></search><sort><creationdate>20211101</creationdate><title>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</title><author>Ivanova, Malinka ; Petkova, Petya ; Petkov, Nikolay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bibliographic records</topic><topic>Bibliometrics</topic><topic>Collaboration</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Hirsch index</topic><topic>Keywords</topic><topic>Machine learning</topic><topic>Science</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Malinka</creatorcontrib><creatorcontrib>Petkova, Petya</creatorcontrib><creatorcontrib>Petkov, Nikolay</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Malinka</au><au>Petkova, Petya</au><au>Petkov, Nikolay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>22</issue><spage>2878</spage><pages>2878-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10222878</doi><orcidid>https://orcid.org/0000-0002-8474-6226</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-11, Vol.10 (22), p.2878
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2602041537
source Publicly Available Content Database
subjects Algorithms
Artificial intelligence
Bibliographic records
Bibliometrics
Collaboration
Electronics
Engineering
Fuzzy logic
Hirsch index
Keywords
Machine learning
Science
Software
title Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20and%20Fuzzy%20Logic%20in%20Electronics:%20Applying%20Intelligence%20in%20Practice&rft.jtitle=Electronics%20(Basel)&rft.au=Ivanova,%20Malinka&rft.date=2021-11-01&rft.volume=10&rft.issue=22&rft.spage=2878&rft.pages=2878-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10222878&rft_dat=%3Cproquest_cross%3E2602041537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602041537&rft_id=info:pmid/&rfr_iscdi=true