Loading…
Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice
The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outli...
Saved in:
Published in: | Electronics (Basel) 2021-11, Vol.10 (22), p.2878 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3 |
container_end_page | |
container_issue | 22 |
container_start_page | 2878 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Ivanova, Malinka Petkova, Petya Petkov, Nikolay |
description | The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems. |
doi_str_mv | 10.3390/electronics10222878 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602041537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602041537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</originalsourceid><addsrcrecordid>eNptkEFLw0AUhBdRsNT-Ai8LnqNv9yXZrLdSWi1EFNFz2Gxf6pa4ibvpof31tlTQg3OZOXzMwDB2LeAWUcMdtWSH0HlnowApZaGKMzaSoHSipZbnf_Ilm8S4gYO0wAJhxF6fjP1wnnhJJnjn19z4FV9s9_sdL7u1s9x5Pv9duOfTvm93R3DpB2pbtyZv6Ui9BGMHZ-mKXTSmjTT58TF7X8zfZo9J-fywnE3LxKKUQ5JZyEHbIjUikwZTrI01BilfoQJolKCm0UCFygopdWOVzbIcocYV1UqnNY7Zzam3D93XluJQbbpt8IfJSuYgIRUZqgOFJ8qGLsZATdUH92nCrhJQHf-r_vkPvwGb22YS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602041537</pqid></control><display><type>article</type><title>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</title><source>Publicly Available Content Database</source><creator>Ivanova, Malinka ; Petkova, Petya ; Petkov, Nikolay</creator><creatorcontrib>Ivanova, Malinka ; Petkova, Petya ; Petkov, Nikolay</creatorcontrib><description>The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10222878</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Bibliographic records ; Bibliometrics ; Collaboration ; Electronics ; Engineering ; Fuzzy logic ; Hirsch index ; Keywords ; Machine learning ; Science ; Software</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (22), p.2878</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</citedby><cites>FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</cites><orcidid>0000-0002-8474-6226</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602041537/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602041537?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ivanova, Malinka</creatorcontrib><creatorcontrib>Petkova, Petya</creatorcontrib><creatorcontrib>Petkov, Nikolay</creatorcontrib><title>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</title><title>Electronics (Basel)</title><description>The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Bibliographic records</subject><subject>Bibliometrics</subject><subject>Collaboration</subject><subject>Electronics</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Hirsch index</subject><subject>Keywords</subject><subject>Machine learning</subject><subject>Science</subject><subject>Software</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkEFLw0AUhBdRsNT-Ai8LnqNv9yXZrLdSWi1EFNFz2Gxf6pa4ibvpof31tlTQg3OZOXzMwDB2LeAWUcMdtWSH0HlnowApZaGKMzaSoHSipZbnf_Ilm8S4gYO0wAJhxF6fjP1wnnhJJnjn19z4FV9s9_sdL7u1s9x5Pv9duOfTvm93R3DpB2pbtyZv6Ui9BGMHZ-mKXTSmjTT58TF7X8zfZo9J-fywnE3LxKKUQ5JZyEHbIjUikwZTrI01BilfoQJolKCm0UCFygopdWOVzbIcocYV1UqnNY7Zzam3D93XluJQbbpt8IfJSuYgIRUZqgOFJ8qGLsZATdUH92nCrhJQHf-r_vkPvwGb22YS</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Ivanova, Malinka</creator><creator>Petkova, Petya</creator><creator>Petkov, Nikolay</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-8474-6226</orcidid></search><sort><creationdate>20211101</creationdate><title>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</title><author>Ivanova, Malinka ; Petkova, Petya ; Petkov, Nikolay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Bibliographic records</topic><topic>Bibliometrics</topic><topic>Collaboration</topic><topic>Electronics</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Hirsch index</topic><topic>Keywords</topic><topic>Machine learning</topic><topic>Science</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanova, Malinka</creatorcontrib><creatorcontrib>Petkova, Petya</creatorcontrib><creatorcontrib>Petkov, Nikolay</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanova, Malinka</au><au>Petkova, Petya</au><au>Petkov, Nikolay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>22</issue><spage>2878</spage><pages>2878-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The paper presents an analysis and summary of the current research state concerning the application of machine learning and fuzzy logic for solving problems in electronics. The investigated domain is conceptualized with aim the achievements, trending topics and future research directions to be outlined. The applied research methodology includes a bibliographic approach in combination with a detailed examination of 66 selected papers. The findings reveal the gradually increasing interest over the last 10 years in the machine learning and fuzzy logic techniques for modeling, implementing and improving different hardware-based intelligent systems.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10222878</doi><orcidid>https://orcid.org/0000-0002-8474-6226</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-11, Vol.10 (22), p.2878 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2602041537 |
source | Publicly Available Content Database |
subjects | Algorithms Artificial intelligence Bibliographic records Bibliometrics Collaboration Electronics Engineering Fuzzy logic Hirsch index Keywords Machine learning Science Software |
title | Machine Learning and Fuzzy Logic in Electronics: Applying Intelligence in Practice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20and%20Fuzzy%20Logic%20in%20Electronics:%20Applying%20Intelligence%20in%20Practice&rft.jtitle=Electronics%20(Basel)&rft.au=Ivanova,%20Malinka&rft.date=2021-11-01&rft.volume=10&rft.issue=22&rft.spage=2878&rft.pages=2878-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10222878&rft_dat=%3Cproquest_cross%3E2602041537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-5c0609c84a152a343bacaa3e6d3700f71eff90e8758229fc7c55630b3deb794b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602041537&rft_id=info:pmid/&rfr_iscdi=true |