Loading…
Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices
In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperatur...
Saved in:
Published in: | Electronics (Basel) 2021-11, Vol.10 (22), p.2816 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003 |
container_end_page | |
container_issue | 22 |
container_start_page | 2816 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | García, Héctor Boo, Jonathan Vinuesa, Guillermo G. Ossorio, Óscar Sahelices, Benjamín Dueñas, Salvador Castán, Helena González, Mireia B. Campabadal, Francesca |
description | In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures. |
doi_str_mv | 10.3390/electronics10222816 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602042455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602042455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</originalsourceid><addsrcrecordid>eNptkEFPwzAMhSMEEtPYL-ASiXMhcZqmOcIY26RJQzDOVZe6LFPXjiQd4t8TNg4c8MWW_fSe_BFyzdmtEJrdYYMmuK61xnMGADnPzsgAmNKJBg3nf-ZLMvJ-y2JpLnLBBqSat3XTY2vQ066mYYN0hbs9ujL0DmnXHleTY4Q1ZUOfXRevwZ70s3oJyUPpsaIv6K0P9oD09dMGs7HtO33Eg43OV-SiLhuPo98-JG9Pk9V4liyW0_n4fpEYARCSfI0MlCxFxbQCzY1KM8OlEpXOIX6WYr6ujWLrLJW11IpnGU_TrDJMyQiCiSG5OfnuXffRow_FtutdGyMLyBiwFFIpo0qcVMZ13jusi72zu9J9FZwVP0SLf4iKb3tfaxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602042455</pqid></control><display><type>article</type><title>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</title><source>Publicly Available Content (ProQuest)</source><creator>García, Héctor ; Boo, Jonathan ; Vinuesa, Guillermo ; G. Ossorio, Óscar ; Sahelices, Benjamín ; Dueñas, Salvador ; Castán, Helena ; González, Mireia B. ; Campabadal, Francesca</creator><creatorcontrib>García, Héctor ; Boo, Jonathan ; Vinuesa, Guillermo ; G. Ossorio, Óscar ; Sahelices, Benjamín ; Dueñas, Salvador ; Castán, Helena ; González, Mireia B. ; Campabadal, Francesca</creatorcontrib><description>In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10222816</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic layer epitaxy ; Compliance ; Electrical properties ; Electrodes ; Electroforming ; Energy ; Hafnium oxide ; Hopping conduction ; Liquid nitrogen ; Low resistance ; Low temperature ; Ohmic dissipation ; Positive feedback ; Resistance heating ; Room temperature ; Switching ; Temperature ; Titanium</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (22), p.2816</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</citedby><cites>FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</cites><orcidid>0000-0003-0389-3409 ; 0000-0002-3380-3403 ; 0000-0002-2328-1752 ; 0000-0003-1329-8806 ; 0000-0003-3457-2317 ; 0000-0001-6792-4556 ; 0000-0001-7758-4567 ; 0000-0002-3874-721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602042455/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602042455?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>García, Héctor</creatorcontrib><creatorcontrib>Boo, Jonathan</creatorcontrib><creatorcontrib>Vinuesa, Guillermo</creatorcontrib><creatorcontrib>G. Ossorio, Óscar</creatorcontrib><creatorcontrib>Sahelices, Benjamín</creatorcontrib><creatorcontrib>Dueñas, Salvador</creatorcontrib><creatorcontrib>Castán, Helena</creatorcontrib><creatorcontrib>González, Mireia B.</creatorcontrib><creatorcontrib>Campabadal, Francesca</creatorcontrib><title>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</title><title>Electronics (Basel)</title><description>In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.</description><subject>Atomic layer epitaxy</subject><subject>Compliance</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Electroforming</subject><subject>Energy</subject><subject>Hafnium oxide</subject><subject>Hopping conduction</subject><subject>Liquid nitrogen</subject><subject>Low resistance</subject><subject>Low temperature</subject><subject>Ohmic dissipation</subject><subject>Positive feedback</subject><subject>Resistance heating</subject><subject>Room temperature</subject><subject>Switching</subject><subject>Temperature</subject><subject>Titanium</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkEFPwzAMhSMEEtPYL-ASiXMhcZqmOcIY26RJQzDOVZe6LFPXjiQd4t8TNg4c8MWW_fSe_BFyzdmtEJrdYYMmuK61xnMGADnPzsgAmNKJBg3nf-ZLMvJ-y2JpLnLBBqSat3XTY2vQ066mYYN0hbs9ujL0DmnXHleTY4Q1ZUOfXRevwZ70s3oJyUPpsaIv6K0P9oD09dMGs7HtO33Eg43OV-SiLhuPo98-JG9Pk9V4liyW0_n4fpEYARCSfI0MlCxFxbQCzY1KM8OlEpXOIX6WYr6ujWLrLJW11IpnGU_TrDJMyQiCiSG5OfnuXffRow_FtutdGyMLyBiwFFIpo0qcVMZ13jusi72zu9J9FZwVP0SLf4iKb3tfaxI</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>García, Héctor</creator><creator>Boo, Jonathan</creator><creator>Vinuesa, Guillermo</creator><creator>G. Ossorio, Óscar</creator><creator>Sahelices, Benjamín</creator><creator>Dueñas, Salvador</creator><creator>Castán, Helena</creator><creator>González, Mireia B.</creator><creator>Campabadal, Francesca</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0389-3409</orcidid><orcidid>https://orcid.org/0000-0002-3380-3403</orcidid><orcidid>https://orcid.org/0000-0002-2328-1752</orcidid><orcidid>https://orcid.org/0000-0003-1329-8806</orcidid><orcidid>https://orcid.org/0000-0003-3457-2317</orcidid><orcidid>https://orcid.org/0000-0001-6792-4556</orcidid><orcidid>https://orcid.org/0000-0001-7758-4567</orcidid><orcidid>https://orcid.org/0000-0002-3874-721X</orcidid></search><sort><creationdate>20211101</creationdate><title>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</title><author>García, Héctor ; Boo, Jonathan ; Vinuesa, Guillermo ; G. Ossorio, Óscar ; Sahelices, Benjamín ; Dueñas, Salvador ; Castán, Helena ; González, Mireia B. ; Campabadal, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic layer epitaxy</topic><topic>Compliance</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Electroforming</topic><topic>Energy</topic><topic>Hafnium oxide</topic><topic>Hopping conduction</topic><topic>Liquid nitrogen</topic><topic>Low resistance</topic><topic>Low temperature</topic><topic>Ohmic dissipation</topic><topic>Positive feedback</topic><topic>Resistance heating</topic><topic>Room temperature</topic><topic>Switching</topic><topic>Temperature</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, Héctor</creatorcontrib><creatorcontrib>Boo, Jonathan</creatorcontrib><creatorcontrib>Vinuesa, Guillermo</creatorcontrib><creatorcontrib>G. Ossorio, Óscar</creatorcontrib><creatorcontrib>Sahelices, Benjamín</creatorcontrib><creatorcontrib>Dueñas, Salvador</creatorcontrib><creatorcontrib>Castán, Helena</creatorcontrib><creatorcontrib>González, Mireia B.</creatorcontrib><creatorcontrib>Campabadal, Francesca</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, Héctor</au><au>Boo, Jonathan</au><au>Vinuesa, Guillermo</au><au>G. Ossorio, Óscar</au><au>Sahelices, Benjamín</au><au>Dueñas, Salvador</au><au>Castán, Helena</au><au>González, Mireia B.</au><au>Campabadal, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>22</issue><spage>2816</spage><pages>2816-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10222816</doi><orcidid>https://orcid.org/0000-0003-0389-3409</orcidid><orcidid>https://orcid.org/0000-0002-3380-3403</orcidid><orcidid>https://orcid.org/0000-0002-2328-1752</orcidid><orcidid>https://orcid.org/0000-0003-1329-8806</orcidid><orcidid>https://orcid.org/0000-0003-3457-2317</orcidid><orcidid>https://orcid.org/0000-0001-6792-4556</orcidid><orcidid>https://orcid.org/0000-0001-7758-4567</orcidid><orcidid>https://orcid.org/0000-0002-3874-721X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-11, Vol.10 (22), p.2816 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2602042455 |
source | Publicly Available Content (ProQuest) |
subjects | Atomic layer epitaxy Compliance Electrical properties Electrodes Electroforming Energy Hafnium oxide Hopping conduction Liquid nitrogen Low resistance Low temperature Ohmic dissipation Positive feedback Resistance heating Room temperature Switching Temperature Titanium |
title | Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20the%20Temperature%20on%20the%20Electrical%20Properties%20of%20HfO2-Based%20Resistive%20Switching%20Devices&rft.jtitle=Electronics%20(Basel)&rft.au=Garc%C3%ADa,%20H%C3%A9ctor&rft.date=2021-11-01&rft.volume=10&rft.issue=22&rft.spage=2816&rft.pages=2816-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10222816&rft_dat=%3Cproquest_cross%3E2602042455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602042455&rft_id=info:pmid/&rfr_iscdi=true |