Loading…

Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices

In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperatur...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2021-11, Vol.10 (22), p.2816
Main Authors: García, Héctor, Boo, Jonathan, Vinuesa, Guillermo, G. Ossorio, Óscar, Sahelices, Benjamín, Dueñas, Salvador, Castán, Helena, González, Mireia B., Campabadal, Francesca
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003
cites cdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003
container_end_page
container_issue 22
container_start_page 2816
container_title Electronics (Basel)
container_volume 10
creator García, Héctor
Boo, Jonathan
Vinuesa, Guillermo
G. Ossorio, Óscar
Sahelices, Benjamín
Dueñas, Salvador
Castán, Helena
González, Mireia B.
Campabadal, Francesca
description In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.
doi_str_mv 10.3390/electronics10222816
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602042455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602042455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</originalsourceid><addsrcrecordid>eNptkEFPwzAMhSMEEtPYL-ASiXMhcZqmOcIY26RJQzDOVZe6LFPXjiQd4t8TNg4c8MWW_fSe_BFyzdmtEJrdYYMmuK61xnMGADnPzsgAmNKJBg3nf-ZLMvJ-y2JpLnLBBqSat3XTY2vQ066mYYN0hbs9ujL0DmnXHleTY4Q1ZUOfXRevwZ70s3oJyUPpsaIv6K0P9oD09dMGs7HtO33Eg43OV-SiLhuPo98-JG9Pk9V4liyW0_n4fpEYARCSfI0MlCxFxbQCzY1KM8OlEpXOIX6WYr6ujWLrLJW11IpnGU_TrDJMyQiCiSG5OfnuXffRow_FtutdGyMLyBiwFFIpo0qcVMZ13jusi72zu9J9FZwVP0SLf4iKb3tfaxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602042455</pqid></control><display><type>article</type><title>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</title><source>Publicly Available Content (ProQuest)</source><creator>García, Héctor ; Boo, Jonathan ; Vinuesa, Guillermo ; G. Ossorio, Óscar ; Sahelices, Benjamín ; Dueñas, Salvador ; Castán, Helena ; González, Mireia B. ; Campabadal, Francesca</creator><creatorcontrib>García, Héctor ; Boo, Jonathan ; Vinuesa, Guillermo ; G. Ossorio, Óscar ; Sahelices, Benjamín ; Dueñas, Salvador ; Castán, Helena ; González, Mireia B. ; Campabadal, Francesca</creatorcontrib><description>In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10222816</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Atomic layer epitaxy ; Compliance ; Electrical properties ; Electrodes ; Electroforming ; Energy ; Hafnium oxide ; Hopping conduction ; Liquid nitrogen ; Low resistance ; Low temperature ; Ohmic dissipation ; Positive feedback ; Resistance heating ; Room temperature ; Switching ; Temperature ; Titanium</subject><ispartof>Electronics (Basel), 2021-11, Vol.10 (22), p.2816</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</citedby><cites>FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</cites><orcidid>0000-0003-0389-3409 ; 0000-0002-3380-3403 ; 0000-0002-2328-1752 ; 0000-0003-1329-8806 ; 0000-0003-3457-2317 ; 0000-0001-6792-4556 ; 0000-0001-7758-4567 ; 0000-0002-3874-721X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602042455/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602042455?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>García, Héctor</creatorcontrib><creatorcontrib>Boo, Jonathan</creatorcontrib><creatorcontrib>Vinuesa, Guillermo</creatorcontrib><creatorcontrib>G. Ossorio, Óscar</creatorcontrib><creatorcontrib>Sahelices, Benjamín</creatorcontrib><creatorcontrib>Dueñas, Salvador</creatorcontrib><creatorcontrib>Castán, Helena</creatorcontrib><creatorcontrib>González, Mireia B.</creatorcontrib><creatorcontrib>Campabadal, Francesca</creatorcontrib><title>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</title><title>Electronics (Basel)</title><description>In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.</description><subject>Atomic layer epitaxy</subject><subject>Compliance</subject><subject>Electrical properties</subject><subject>Electrodes</subject><subject>Electroforming</subject><subject>Energy</subject><subject>Hafnium oxide</subject><subject>Hopping conduction</subject><subject>Liquid nitrogen</subject><subject>Low resistance</subject><subject>Low temperature</subject><subject>Ohmic dissipation</subject><subject>Positive feedback</subject><subject>Resistance heating</subject><subject>Room temperature</subject><subject>Switching</subject><subject>Temperature</subject><subject>Titanium</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptkEFPwzAMhSMEEtPYL-ASiXMhcZqmOcIY26RJQzDOVZe6LFPXjiQd4t8TNg4c8MWW_fSe_BFyzdmtEJrdYYMmuK61xnMGADnPzsgAmNKJBg3nf-ZLMvJ-y2JpLnLBBqSat3XTY2vQ066mYYN0hbs9ujL0DmnXHleTY4Q1ZUOfXRevwZ70s3oJyUPpsaIv6K0P9oD09dMGs7HtO33Eg43OV-SiLhuPo98-JG9Pk9V4liyW0_n4fpEYARCSfI0MlCxFxbQCzY1KM8OlEpXOIX6WYr6ujWLrLJW11IpnGU_TrDJMyQiCiSG5OfnuXffRow_FtutdGyMLyBiwFFIpo0qcVMZ13jusi72zu9J9FZwVP0SLf4iKb3tfaxI</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>García, Héctor</creator><creator>Boo, Jonathan</creator><creator>Vinuesa, Guillermo</creator><creator>G. Ossorio, Óscar</creator><creator>Sahelices, Benjamín</creator><creator>Dueñas, Salvador</creator><creator>Castán, Helena</creator><creator>González, Mireia B.</creator><creator>Campabadal, Francesca</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-0389-3409</orcidid><orcidid>https://orcid.org/0000-0002-3380-3403</orcidid><orcidid>https://orcid.org/0000-0002-2328-1752</orcidid><orcidid>https://orcid.org/0000-0003-1329-8806</orcidid><orcidid>https://orcid.org/0000-0003-3457-2317</orcidid><orcidid>https://orcid.org/0000-0001-6792-4556</orcidid><orcidid>https://orcid.org/0000-0001-7758-4567</orcidid><orcidid>https://orcid.org/0000-0002-3874-721X</orcidid></search><sort><creationdate>20211101</creationdate><title>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</title><author>García, Héctor ; Boo, Jonathan ; Vinuesa, Guillermo ; G. Ossorio, Óscar ; Sahelices, Benjamín ; Dueñas, Salvador ; Castán, Helena ; González, Mireia B. ; Campabadal, Francesca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic layer epitaxy</topic><topic>Compliance</topic><topic>Electrical properties</topic><topic>Electrodes</topic><topic>Electroforming</topic><topic>Energy</topic><topic>Hafnium oxide</topic><topic>Hopping conduction</topic><topic>Liquid nitrogen</topic><topic>Low resistance</topic><topic>Low temperature</topic><topic>Ohmic dissipation</topic><topic>Positive feedback</topic><topic>Resistance heating</topic><topic>Room temperature</topic><topic>Switching</topic><topic>Temperature</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García, Héctor</creatorcontrib><creatorcontrib>Boo, Jonathan</creatorcontrib><creatorcontrib>Vinuesa, Guillermo</creatorcontrib><creatorcontrib>G. Ossorio, Óscar</creatorcontrib><creatorcontrib>Sahelices, Benjamín</creatorcontrib><creatorcontrib>Dueñas, Salvador</creatorcontrib><creatorcontrib>Castán, Helena</creatorcontrib><creatorcontrib>González, Mireia B.</creatorcontrib><creatorcontrib>Campabadal, Francesca</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García, Héctor</au><au>Boo, Jonathan</au><au>Vinuesa, Guillermo</au><au>G. Ossorio, Óscar</au><au>Sahelices, Benjamín</au><au>Dueñas, Salvador</au><au>Castán, Helena</au><au>González, Mireia B.</au><au>Campabadal, Francesca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>10</volume><issue>22</issue><spage>2816</spage><pages>2816-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>In the attempt to understand the behavior of HfO2-based resistive switching devices at low temperatures, TiN/Ti/HfO2/W metal–insulator–metal devices were fabricated; the atomic layer deposition technique was used to grow the high-k layer. After performing an electroforming process at room temperature, the device was cooled in a cryostat to carry out 100 current–voltage cycles at several temperatures ranging from the “liquid nitrogen temperature” to 350 K. The measurements showed a semiconducting behavior in high and low resistance states. In the low resistance state, a hopping conduction mechanism was obtained. The set and reset voltages increased when temperature decreased because the thermal energies for oxygen vacancies and ions were reduced. However, the temperature did not influence the power absorbed in the reset transition, indicating the local temperature in the filament controls the transition. The set transition turned from gradual to abrupt when decreasing the temperature, due to a positive feedback between the current increase and the Joule heating at low temperatures.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10222816</doi><orcidid>https://orcid.org/0000-0003-0389-3409</orcidid><orcidid>https://orcid.org/0000-0002-3380-3403</orcidid><orcidid>https://orcid.org/0000-0002-2328-1752</orcidid><orcidid>https://orcid.org/0000-0003-1329-8806</orcidid><orcidid>https://orcid.org/0000-0003-3457-2317</orcidid><orcidid>https://orcid.org/0000-0001-6792-4556</orcidid><orcidid>https://orcid.org/0000-0001-7758-4567</orcidid><orcidid>https://orcid.org/0000-0002-3874-721X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-11, Vol.10 (22), p.2816
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2602042455
source Publicly Available Content (ProQuest)
subjects Atomic layer epitaxy
Compliance
Electrical properties
Electrodes
Electroforming
Energy
Hafnium oxide
Hopping conduction
Liquid nitrogen
Low resistance
Low temperature
Ohmic dissipation
Positive feedback
Resistance heating
Room temperature
Switching
Temperature
Titanium
title Influences of the Temperature on the Electrical Properties of HfO2-Based Resistive Switching Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influences%20of%20the%20Temperature%20on%20the%20Electrical%20Properties%20of%20HfO2-Based%20Resistive%20Switching%20Devices&rft.jtitle=Electronics%20(Basel)&rft.au=Garc%C3%ADa,%20H%C3%A9ctor&rft.date=2021-11-01&rft.volume=10&rft.issue=22&rft.spage=2816&rft.pages=2816-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10222816&rft_dat=%3Cproquest_cross%3E2602042455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-8be0275a3d097291c746c1573d9820224e8bfc70b645f5971661446dc07539003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602042455&rft_id=info:pmid/&rfr_iscdi=true