Loading…
The Colonization of a Cold Spring Ecosystem by the Invasive Species Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) (Southern Poland)
Springs are unique aquatic environments that support specific biota, including endemic species and rare species listed in Red Lists. Due to their usually small size, springs are highly sensitive to disturbance. Many of them are threatened by aquifer depletion, contamination, surface-water diversion,...
Saved in:
Published in: | Water (Basel) 2021-11, Vol.13 (22), p.3209 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633 |
container_end_page | |
container_issue | 22 |
container_start_page | 3209 |
container_title | Water (Basel) |
container_volume | 13 |
creator | Krodkiewska, Mariola Cieplok, Anna Spyra, Aneta |
description | Springs are unique aquatic environments that support specific biota, including endemic species and rare species listed in Red Lists. Due to their usually small size, springs are highly sensitive to disturbance. Many of them are threatened by aquifer depletion, contamination, surface-water diversion, livestock trampling, recreation, and invasive species. The aim of this study was to assess the colonization success of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in a cold spring ecosystem in southern Poland. In Europe, this species has recently been added to the top “hundred worst” alien species due to its impact on invaded ecosystems. The study was carried out in two areas of the spring ecosystem—in the springhead and the springbrook—over a four-year period. Potamopyrus antipodarum dominated the benthic macroinvertebrate communities in both areas of the spring ecosystem. Nevertheless, its abundance in the springbrook was significantly greater, and increased noticeably during subsequent years compared to that in the springhead. The populations of P. antipodarum were exclusively composed of females. Smaller-sized New Zealand mudsnails were more abundant near the spring’s source than at the second site. The females at the springhead became fecund at sizes as small as 3.7 mm (the number of embryos was between 0 and 37), while at the springbrook, embryos were found in snails as small as 3.4 mm (the number of embryos was between 0 and 42). Our results suggest that the lower water temperature at the springhead may limit the population size of P. antipodarum, thus making its density too low to be able to affect the community structure of benthic macroinvertebrates, including the spring snail Bythinella cf. austriaca. |
doi_str_mv | 10.3390/w13223209 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602244100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602244100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633</originalsourceid><addsrcrecordid>eNpNkNFKwzAUhoMoOOYufIOANw6spknbtd7JmHMwUNi8LmlyMjvWpCbpRn0Mn9iMiXhuzjn_-fkPfAhdx-SesYI8HGJGKaOkOEMDSiYsSpIkPv83X6KRc1sSKinyPCUD9L3-ADw1O6PrL-5ro7FRmB8ViVetrfUGz4RxvfPQ4KrHPtgXes9dvYdgAFGDw2_G88a0vd10DnPt69ZIbrsG384t7-9wnCdsHBbuvDXH2yNecw-15BDklelCqtUhZse1HF-hC8V3Dka_fYjen2fr6Uu0fJ0vpk_LSNCC-kilUlaprESV5TSnVBIQQkmiJJtwCUlCU5rHlShSKhmrYilgoiogUgkQWcbYEN2ccltrPjtwvtyazurwsqQZoTTwIiS4xieXsMY5C6oMVBpu-zIm5ZF6-Ued_QAkrnVn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602244100</pqid></control><display><type>article</type><title>The Colonization of a Cold Spring Ecosystem by the Invasive Species Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) (Southern Poland)</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Krodkiewska, Mariola ; Cieplok, Anna ; Spyra, Aneta</creator><creatorcontrib>Krodkiewska, Mariola ; Cieplok, Anna ; Spyra, Aneta</creatorcontrib><description>Springs are unique aquatic environments that support specific biota, including endemic species and rare species listed in Red Lists. Due to their usually small size, springs are highly sensitive to disturbance. Many of them are threatened by aquifer depletion, contamination, surface-water diversion, livestock trampling, recreation, and invasive species. The aim of this study was to assess the colonization success of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in a cold spring ecosystem in southern Poland. In Europe, this species has recently been added to the top “hundred worst” alien species due to its impact on invaded ecosystems. The study was carried out in two areas of the spring ecosystem—in the springhead and the springbrook—over a four-year period. Potamopyrus antipodarum dominated the benthic macroinvertebrate communities in both areas of the spring ecosystem. Nevertheless, its abundance in the springbrook was significantly greater, and increased noticeably during subsequent years compared to that in the springhead. The populations of P. antipodarum were exclusively composed of females. Smaller-sized New Zealand mudsnails were more abundant near the spring’s source than at the second site. The females at the springhead became fecund at sizes as small as 3.7 mm (the number of embryos was between 0 and 37), while at the springbrook, embryos were found in snails as small as 3.4 mm (the number of embryos was between 0 and 42). Our results suggest that the lower water temperature at the springhead may limit the population size of P. antipodarum, thus making its density too low to be able to affect the community structure of benthic macroinvertebrates, including the spring snail Bythinella cf. austriaca.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w13223209</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aquatic environment ; Aquifers ; Biodiversity ; Biota ; Cold springs ; Colonization ; Community structure ; Contamination ; Creeks & streams ; Depletion ; Ecosystems ; Embryos ; Endangered & extinct species ; Endemic species ; Gastropoda ; Introduced species ; Invasive species ; Livestock ; Mollusks ; Nonnative species ; Parasites ; Population number ; Potamopyrgus antipodarum ; Rare species ; River networks ; Snails ; Surface water ; Trampling ; Water diversion ; Water pollution ; Water springs ; Water temperature</subject><ispartof>Water (Basel), 2021-11, Vol.13 (22), p.3209</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633</citedby><cites>FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633</cites><orcidid>0000-0003-1704-0589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2602244100/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2602244100?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Krodkiewska, Mariola</creatorcontrib><creatorcontrib>Cieplok, Anna</creatorcontrib><creatorcontrib>Spyra, Aneta</creatorcontrib><title>The Colonization of a Cold Spring Ecosystem by the Invasive Species Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) (Southern Poland)</title><title>Water (Basel)</title><description>Springs are unique aquatic environments that support specific biota, including endemic species and rare species listed in Red Lists. Due to their usually small size, springs are highly sensitive to disturbance. Many of them are threatened by aquifer depletion, contamination, surface-water diversion, livestock trampling, recreation, and invasive species. The aim of this study was to assess the colonization success of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in a cold spring ecosystem in southern Poland. In Europe, this species has recently been added to the top “hundred worst” alien species due to its impact on invaded ecosystems. The study was carried out in two areas of the spring ecosystem—in the springhead and the springbrook—over a four-year period. Potamopyrus antipodarum dominated the benthic macroinvertebrate communities in both areas of the spring ecosystem. Nevertheless, its abundance in the springbrook was significantly greater, and increased noticeably during subsequent years compared to that in the springhead. The populations of P. antipodarum were exclusively composed of females. Smaller-sized New Zealand mudsnails were more abundant near the spring’s source than at the second site. The females at the springhead became fecund at sizes as small as 3.7 mm (the number of embryos was between 0 and 37), while at the springbrook, embryos were found in snails as small as 3.4 mm (the number of embryos was between 0 and 42). Our results suggest that the lower water temperature at the springhead may limit the population size of P. antipodarum, thus making its density too low to be able to affect the community structure of benthic macroinvertebrates, including the spring snail Bythinella cf. austriaca.</description><subject>Aquatic environment</subject><subject>Aquifers</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Cold springs</subject><subject>Colonization</subject><subject>Community structure</subject><subject>Contamination</subject><subject>Creeks & streams</subject><subject>Depletion</subject><subject>Ecosystems</subject><subject>Embryos</subject><subject>Endangered & extinct species</subject><subject>Endemic species</subject><subject>Gastropoda</subject><subject>Introduced species</subject><subject>Invasive species</subject><subject>Livestock</subject><subject>Mollusks</subject><subject>Nonnative species</subject><subject>Parasites</subject><subject>Population number</subject><subject>Potamopyrgus antipodarum</subject><subject>Rare species</subject><subject>River networks</subject><subject>Snails</subject><subject>Surface water</subject><subject>Trampling</subject><subject>Water diversion</subject><subject>Water pollution</subject><subject>Water springs</subject><subject>Water temperature</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkNFKwzAUhoMoOOYufIOANw6spknbtd7JmHMwUNi8LmlyMjvWpCbpRn0Mn9iMiXhuzjn_-fkPfAhdx-SesYI8HGJGKaOkOEMDSiYsSpIkPv83X6KRc1sSKinyPCUD9L3-ADw1O6PrL-5ro7FRmB8ViVetrfUGz4RxvfPQ4KrHPtgXes9dvYdgAFGDw2_G88a0vd10DnPt69ZIbrsG384t7-9wnCdsHBbuvDXH2yNecw-15BDklelCqtUhZse1HF-hC8V3Dka_fYjen2fr6Uu0fJ0vpk_LSNCC-kilUlaprESV5TSnVBIQQkmiJJtwCUlCU5rHlShSKhmrYilgoiogUgkQWcbYEN2ccltrPjtwvtyazurwsqQZoTTwIiS4xieXsMY5C6oMVBpu-zIm5ZF6-Ued_QAkrnVn</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Krodkiewska, Mariola</creator><creator>Cieplok, Anna</creator><creator>Spyra, Aneta</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-1704-0589</orcidid></search><sort><creationdate>20211112</creationdate><title>The Colonization of a Cold Spring Ecosystem by the Invasive Species Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) (Southern Poland)</title><author>Krodkiewska, Mariola ; Cieplok, Anna ; Spyra, Aneta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aquatic environment</topic><topic>Aquifers</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Cold springs</topic><topic>Colonization</topic><topic>Community structure</topic><topic>Contamination</topic><topic>Creeks & streams</topic><topic>Depletion</topic><topic>Ecosystems</topic><topic>Embryos</topic><topic>Endangered & extinct species</topic><topic>Endemic species</topic><topic>Gastropoda</topic><topic>Introduced species</topic><topic>Invasive species</topic><topic>Livestock</topic><topic>Mollusks</topic><topic>Nonnative species</topic><topic>Parasites</topic><topic>Population number</topic><topic>Potamopyrgus antipodarum</topic><topic>Rare species</topic><topic>River networks</topic><topic>Snails</topic><topic>Surface water</topic><topic>Trampling</topic><topic>Water diversion</topic><topic>Water pollution</topic><topic>Water springs</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krodkiewska, Mariola</creatorcontrib><creatorcontrib>Cieplok, Anna</creatorcontrib><creatorcontrib>Spyra, Aneta</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krodkiewska, Mariola</au><au>Cieplok, Anna</au><au>Spyra, Aneta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Colonization of a Cold Spring Ecosystem by the Invasive Species Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) (Southern Poland)</atitle><jtitle>Water (Basel)</jtitle><date>2021-11-12</date><risdate>2021</risdate><volume>13</volume><issue>22</issue><spage>3209</spage><pages>3209-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>Springs are unique aquatic environments that support specific biota, including endemic species and rare species listed in Red Lists. Due to their usually small size, springs are highly sensitive to disturbance. Many of them are threatened by aquifer depletion, contamination, surface-water diversion, livestock trampling, recreation, and invasive species. The aim of this study was to assess the colonization success of the invasive New Zealand mud snail (Potamopyrgus antipodarum) in a cold spring ecosystem in southern Poland. In Europe, this species has recently been added to the top “hundred worst” alien species due to its impact on invaded ecosystems. The study was carried out in two areas of the spring ecosystem—in the springhead and the springbrook—over a four-year period. Potamopyrus antipodarum dominated the benthic macroinvertebrate communities in both areas of the spring ecosystem. Nevertheless, its abundance in the springbrook was significantly greater, and increased noticeably during subsequent years compared to that in the springhead. The populations of P. antipodarum were exclusively composed of females. Smaller-sized New Zealand mudsnails were more abundant near the spring’s source than at the second site. The females at the springhead became fecund at sizes as small as 3.7 mm (the number of embryos was between 0 and 37), while at the springbrook, embryos were found in snails as small as 3.4 mm (the number of embryos was between 0 and 42). Our results suggest that the lower water temperature at the springhead may limit the population size of P. antipodarum, thus making its density too low to be able to affect the community structure of benthic macroinvertebrates, including the spring snail Bythinella cf. austriaca.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w13223209</doi><orcidid>https://orcid.org/0000-0003-1704-0589</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4441 |
ispartof | Water (Basel), 2021-11, Vol.13 (22), p.3209 |
issn | 2073-4441 2073-4441 |
language | eng |
recordid | cdi_proquest_journals_2602244100 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Aquatic environment Aquifers Biodiversity Biota Cold springs Colonization Community structure Contamination Creeks & streams Depletion Ecosystems Embryos Endangered & extinct species Endemic species Gastropoda Introduced species Invasive species Livestock Mollusks Nonnative species Parasites Population number Potamopyrgus antipodarum Rare species River networks Snails Surface water Trampling Water diversion Water pollution Water springs Water temperature |
title | The Colonization of a Cold Spring Ecosystem by the Invasive Species Potamopyrgus antipodarum (Gray, 1843) (Gastropoda: Tateidae) (Southern Poland) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Colonization%20of%20a%20Cold%20Spring%20Ecosystem%20by%20the%20Invasive%20Species%20Potamopyrgus%20antipodarum%20(Gray,%201843)%20(Gastropoda:%20Tateidae)%20(Southern%20Poland)&rft.jtitle=Water%20(Basel)&rft.au=Krodkiewska,%20Mariola&rft.date=2021-11-12&rft.volume=13&rft.issue=22&rft.spage=3209&rft.pages=3209-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w13223209&rft_dat=%3Cproquest_cross%3E2602244100%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f5ddb5dbcb682822d0eccfd0fd37ade4425281bc952d33b1dce7fbe0dfcec6633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602244100&rft_id=info:pmid/&rfr_iscdi=true |