Loading…

Constraining Plate Motion and Crustal Deformation from GNSS Measurements: CSIR-NGRI Contribution

Geodetic studies of crustal deformation using Global Navigation Satellite System (GNSS, earlier commonly referred to as Global Positioning System, GPS) measurements at CSIR-NGRI started in 1995 with the installation of a permanent GNSS station at CSIR-NGRI Hyderabad which later became an Internation...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Geological Society of India 2021-10, Vol.97 (10), p.1207-1213
Main Authors: Rajewar, S. K., Mohana Lakshmi, Ch, Mohanty, Aditya, Pandey, Dwijendra N., Pandey, Anshuman, Chaurasia, Anurag, Pandey, Ananya, Rajeswar Rao, V., Naidu, M. S., Kumar, Amit, Mondal, Saroj K., Yadav, Rajeev K., Catherine, J. K., Giri, R. K., Gahalaut, V. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-f18ea2db33fe879579c5e122de02d2c0c6b4884d141b2435e4fbba1a74e6dd693
container_end_page 1213
container_issue 10
container_start_page 1207
container_title Journal of the Geological Society of India
container_volume 97
creator Rajewar, S. K.
Mohana Lakshmi, Ch
Mohanty, Aditya
Pandey, Dwijendra N.
Pandey, Anshuman
Chaurasia, Anurag
Pandey, Ananya
Rajeswar Rao, V.
Naidu, M. S.
Kumar, Amit
Mondal, Saroj K.
Yadav, Rajeev K.
Catherine, J. K.
Giri, R. K.
Gahalaut, V. K.
description Geodetic studies of crustal deformation using Global Navigation Satellite System (GNSS, earlier commonly referred to as Global Positioning System, GPS) measurements at CSIR-NGRI started in 1995 with the installation of a permanent GNSS station at CSIR-NGRI Hyderabad which later became an International GNSS Service (IGS) site. The CSIR-NGRI started expanding its GNSS networks after 2003 with more focussed studies through installation in the NE India, Himalayan arc, Andaman subduction zone, stable and failed rift regions of India plate. In each instance, these measurements helped in unravelling the geodynamics of the region and seismic hazard assessment, e.g., the discovery of a plate boundary fault in the Indo-Burmese wedge, rate and mode of strain accumulation and its spatial variation in the Garhwal-Kumaun and Kashmir region of the Himalayan arc, the influence of non-tectonic deformation on tectonic deformation in the Himalayan arc, nature of crustal deformation through earthquake cycle in the Andaman Sumatra subduction zone, and localised deformation in the intraplate region and across the paleo rift regions. Besides these, GNSS measurements initiated in the Antarctica region have helped in understanding the plate motion and influence of seasonal variations on deformation. Another important by-product of the GNSS observations is the capabilities of these observations in understanding the ionospheric variations due to earthquake processes and also due to solar eclipse. We summarize these outcomes in this article.
doi_str_mv 10.1007/s12594-021-1850-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602675426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602675426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f18ea2db33fe879579c5e122de02d2c0c6b4884d141b2435e4fbba1a74e6dd693</originalsourceid><addsrcrecordid>eNp1kLFOwzAQhi0EEqXwAGyWmA224zgOGwpQKtGCWpiNk1yqVI1dbGfg7UkJEhPTnU7f_5_0IXTJ6DWjNLsJjKe5IJQzwlRKiTpCE5pngkil8uNhp0ySTHJ-is5C2FIqBVXJBH0UzoboTWtbu8GvOxMBL1xsncXG1rjwfYhmh--hcb4zP_fGuw7Plus1XoAJvYcObAy3uFjPV2Q5W83x0Bl9W_YH_BydNGYX4OJ3TtH748Nb8USeX2bz4u6ZVFyqSBqmwPC6TJIGVJanWV6lwDivgfKaV7SSpVBK1EywkoskBdGUpWEmEyDrWubJFF2NvXvvPnsIUW9d7-3wUnNJucxSweVAsZGqvAvBQ6P3vu2M_9KM6oNIPYrUg0h9EKnVkOFjJgys3YD_a_4_9A2ygHWu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602675426</pqid></control><display><type>article</type><title>Constraining Plate Motion and Crustal Deformation from GNSS Measurements: CSIR-NGRI Contribution</title><source>Springer Link</source><creator>Rajewar, S. K. ; Mohana Lakshmi, Ch ; Mohanty, Aditya ; Pandey, Dwijendra N. ; Pandey, Anshuman ; Chaurasia, Anurag ; Pandey, Ananya ; Rajeswar Rao, V. ; Naidu, M. S. ; Kumar, Amit ; Mondal, Saroj K. ; Yadav, Rajeev K. ; Catherine, J. K. ; Giri, R. K. ; Gahalaut, V. K.</creator><creatorcontrib>Rajewar, S. K. ; Mohana Lakshmi, Ch ; Mohanty, Aditya ; Pandey, Dwijendra N. ; Pandey, Anshuman ; Chaurasia, Anurag ; Pandey, Ananya ; Rajeswar Rao, V. ; Naidu, M. S. ; Kumar, Amit ; Mondal, Saroj K. ; Yadav, Rajeev K. ; Catherine, J. K. ; Giri, R. K. ; Gahalaut, V. K.</creatorcontrib><description>Geodetic studies of crustal deformation using Global Navigation Satellite System (GNSS, earlier commonly referred to as Global Positioning System, GPS) measurements at CSIR-NGRI started in 1995 with the installation of a permanent GNSS station at CSIR-NGRI Hyderabad which later became an International GNSS Service (IGS) site. The CSIR-NGRI started expanding its GNSS networks after 2003 with more focussed studies through installation in the NE India, Himalayan arc, Andaman subduction zone, stable and failed rift regions of India plate. In each instance, these measurements helped in unravelling the geodynamics of the region and seismic hazard assessment, e.g., the discovery of a plate boundary fault in the Indo-Burmese wedge, rate and mode of strain accumulation and its spatial variation in the Garhwal-Kumaun and Kashmir region of the Himalayan arc, the influence of non-tectonic deformation on tectonic deformation in the Himalayan arc, nature of crustal deformation through earthquake cycle in the Andaman Sumatra subduction zone, and localised deformation in the intraplate region and across the paleo rift regions. Besides these, GNSS measurements initiated in the Antarctica region have helped in understanding the plate motion and influence of seasonal variations on deformation. Another important by-product of the GNSS observations is the capabilities of these observations in understanding the ionospheric variations due to earthquake processes and also due to solar eclipse. We summarize these outcomes in this article.</description><identifier>ISSN: 0016-7622</identifier><identifier>EISSN: 0974-6889</identifier><identifier>DOI: 10.1007/s12594-021-1850-8</identifier><language>eng</language><publisher>New Delhi: Geological Society of India</publisher><subject>Deformation ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Geodynamics ; Geological hazards ; Geology ; Global navigation satellite system ; Global positioning systems ; GPS ; Hazard assessment ; Hydrogeology ; Navigation ; Navigational satellites ; Plate boundaries ; Plate motion ; Plate tectonics ; Plates (tectonics) ; Positioning systems ; Regions ; Satellite observation ; Seasonal variation ; Seasonal variations ; Seismic activity ; Seismic hazard ; Solar eclipses ; Spatial variations ; Subduction ; Subduction (geology) ; Subduction zones ; Tectonics ; Tectonophysics</subject><ispartof>Journal of the Geological Society of India, 2021-10, Vol.97 (10), p.1207-1213</ispartof><rights>GEOL. SOC. INDIA 2021</rights><rights>GEOL. SOC. INDIA 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f18ea2db33fe879579c5e122de02d2c0c6b4884d141b2435e4fbba1a74e6dd693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rajewar, S. K.</creatorcontrib><creatorcontrib>Mohana Lakshmi, Ch</creatorcontrib><creatorcontrib>Mohanty, Aditya</creatorcontrib><creatorcontrib>Pandey, Dwijendra N.</creatorcontrib><creatorcontrib>Pandey, Anshuman</creatorcontrib><creatorcontrib>Chaurasia, Anurag</creatorcontrib><creatorcontrib>Pandey, Ananya</creatorcontrib><creatorcontrib>Rajeswar Rao, V.</creatorcontrib><creatorcontrib>Naidu, M. S.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Mondal, Saroj K.</creatorcontrib><creatorcontrib>Yadav, Rajeev K.</creatorcontrib><creatorcontrib>Catherine, J. K.</creatorcontrib><creatorcontrib>Giri, R. K.</creatorcontrib><creatorcontrib>Gahalaut, V. K.</creatorcontrib><title>Constraining Plate Motion and Crustal Deformation from GNSS Measurements: CSIR-NGRI Contribution</title><title>Journal of the Geological Society of India</title><addtitle>J Geol Soc India</addtitle><description>Geodetic studies of crustal deformation using Global Navigation Satellite System (GNSS, earlier commonly referred to as Global Positioning System, GPS) measurements at CSIR-NGRI started in 1995 with the installation of a permanent GNSS station at CSIR-NGRI Hyderabad which later became an International GNSS Service (IGS) site. The CSIR-NGRI started expanding its GNSS networks after 2003 with more focussed studies through installation in the NE India, Himalayan arc, Andaman subduction zone, stable and failed rift regions of India plate. In each instance, these measurements helped in unravelling the geodynamics of the region and seismic hazard assessment, e.g., the discovery of a plate boundary fault in the Indo-Burmese wedge, rate and mode of strain accumulation and its spatial variation in the Garhwal-Kumaun and Kashmir region of the Himalayan arc, the influence of non-tectonic deformation on tectonic deformation in the Himalayan arc, nature of crustal deformation through earthquake cycle in the Andaman Sumatra subduction zone, and localised deformation in the intraplate region and across the paleo rift regions. Besides these, GNSS measurements initiated in the Antarctica region have helped in understanding the plate motion and influence of seasonal variations on deformation. Another important by-product of the GNSS observations is the capabilities of these observations in understanding the ionospheric variations due to earthquake processes and also due to solar eclipse. We summarize these outcomes in this article.</description><subject>Deformation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Geodynamics</subject><subject>Geological hazards</subject><subject>Geology</subject><subject>Global navigation satellite system</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Hazard assessment</subject><subject>Hydrogeology</subject><subject>Navigation</subject><subject>Navigational satellites</subject><subject>Plate boundaries</subject><subject>Plate motion</subject><subject>Plate tectonics</subject><subject>Plates (tectonics)</subject><subject>Positioning systems</subject><subject>Regions</subject><subject>Satellite observation</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Seismic activity</subject><subject>Seismic hazard</subject><subject>Solar eclipses</subject><subject>Spatial variations</subject><subject>Subduction</subject><subject>Subduction (geology)</subject><subject>Subduction zones</subject><subject>Tectonics</subject><subject>Tectonophysics</subject><issn>0016-7622</issn><issn>0974-6889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQhi0EEqXwAGyWmA224zgOGwpQKtGCWpiNk1yqVI1dbGfg7UkJEhPTnU7f_5_0IXTJ6DWjNLsJjKe5IJQzwlRKiTpCE5pngkil8uNhp0ySTHJ-is5C2FIqBVXJBH0UzoboTWtbu8GvOxMBL1xsncXG1rjwfYhmh--hcb4zP_fGuw7Plus1XoAJvYcObAy3uFjPV2Q5W83x0Bl9W_YH_BydNGYX4OJ3TtH748Nb8USeX2bz4u6ZVFyqSBqmwPC6TJIGVJanWV6lwDivgfKaV7SSpVBK1EywkoskBdGUpWEmEyDrWubJFF2NvXvvPnsIUW9d7-3wUnNJucxSweVAsZGqvAvBQ6P3vu2M_9KM6oNIPYrUg0h9EKnVkOFjJgys3YD_a_4_9A2ygHWu</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Rajewar, S. K.</creator><creator>Mohana Lakshmi, Ch</creator><creator>Mohanty, Aditya</creator><creator>Pandey, Dwijendra N.</creator><creator>Pandey, Anshuman</creator><creator>Chaurasia, Anurag</creator><creator>Pandey, Ananya</creator><creator>Rajeswar Rao, V.</creator><creator>Naidu, M. S.</creator><creator>Kumar, Amit</creator><creator>Mondal, Saroj K.</creator><creator>Yadav, Rajeev K.</creator><creator>Catherine, J. K.</creator><creator>Giri, R. K.</creator><creator>Gahalaut, V. K.</creator><general>Geological Society of India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope></search><sort><creationdate>20211001</creationdate><title>Constraining Plate Motion and Crustal Deformation from GNSS Measurements: CSIR-NGRI Contribution</title><author>Rajewar, S. K. ; Mohana Lakshmi, Ch ; Mohanty, Aditya ; Pandey, Dwijendra N. ; Pandey, Anshuman ; Chaurasia, Anurag ; Pandey, Ananya ; Rajeswar Rao, V. ; Naidu, M. S. ; Kumar, Amit ; Mondal, Saroj K. ; Yadav, Rajeev K. ; Catherine, J. K. ; Giri, R. K. ; Gahalaut, V. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f18ea2db33fe879579c5e122de02d2c0c6b4884d141b2435e4fbba1a74e6dd693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deformation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Geodynamics</topic><topic>Geological hazards</topic><topic>Geology</topic><topic>Global navigation satellite system</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Hazard assessment</topic><topic>Hydrogeology</topic><topic>Navigation</topic><topic>Navigational satellites</topic><topic>Plate boundaries</topic><topic>Plate motion</topic><topic>Plate tectonics</topic><topic>Plates (tectonics)</topic><topic>Positioning systems</topic><topic>Regions</topic><topic>Satellite observation</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Seismic activity</topic><topic>Seismic hazard</topic><topic>Solar eclipses</topic><topic>Spatial variations</topic><topic>Subduction</topic><topic>Subduction (geology)</topic><topic>Subduction zones</topic><topic>Tectonics</topic><topic>Tectonophysics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajewar, S. K.</creatorcontrib><creatorcontrib>Mohana Lakshmi, Ch</creatorcontrib><creatorcontrib>Mohanty, Aditya</creatorcontrib><creatorcontrib>Pandey, Dwijendra N.</creatorcontrib><creatorcontrib>Pandey, Anshuman</creatorcontrib><creatorcontrib>Chaurasia, Anurag</creatorcontrib><creatorcontrib>Pandey, Ananya</creatorcontrib><creatorcontrib>Rajeswar Rao, V.</creatorcontrib><creatorcontrib>Naidu, M. S.</creatorcontrib><creatorcontrib>Kumar, Amit</creatorcontrib><creatorcontrib>Mondal, Saroj K.</creatorcontrib><creatorcontrib>Yadav, Rajeev K.</creatorcontrib><creatorcontrib>Catherine, J. K.</creatorcontrib><creatorcontrib>Giri, R. K.</creatorcontrib><creatorcontrib>Gahalaut, V. K.</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of the Geological Society of India</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajewar, S. K.</au><au>Mohana Lakshmi, Ch</au><au>Mohanty, Aditya</au><au>Pandey, Dwijendra N.</au><au>Pandey, Anshuman</au><au>Chaurasia, Anurag</au><au>Pandey, Ananya</au><au>Rajeswar Rao, V.</au><au>Naidu, M. S.</au><au>Kumar, Amit</au><au>Mondal, Saroj K.</au><au>Yadav, Rajeev K.</au><au>Catherine, J. K.</au><au>Giri, R. K.</au><au>Gahalaut, V. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining Plate Motion and Crustal Deformation from GNSS Measurements: CSIR-NGRI Contribution</atitle><jtitle>Journal of the Geological Society of India</jtitle><stitle>J Geol Soc India</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>97</volume><issue>10</issue><spage>1207</spage><epage>1213</epage><pages>1207-1213</pages><issn>0016-7622</issn><eissn>0974-6889</eissn><abstract>Geodetic studies of crustal deformation using Global Navigation Satellite System (GNSS, earlier commonly referred to as Global Positioning System, GPS) measurements at CSIR-NGRI started in 1995 with the installation of a permanent GNSS station at CSIR-NGRI Hyderabad which later became an International GNSS Service (IGS) site. The CSIR-NGRI started expanding its GNSS networks after 2003 with more focussed studies through installation in the NE India, Himalayan arc, Andaman subduction zone, stable and failed rift regions of India plate. In each instance, these measurements helped in unravelling the geodynamics of the region and seismic hazard assessment, e.g., the discovery of a plate boundary fault in the Indo-Burmese wedge, rate and mode of strain accumulation and its spatial variation in the Garhwal-Kumaun and Kashmir region of the Himalayan arc, the influence of non-tectonic deformation on tectonic deformation in the Himalayan arc, nature of crustal deformation through earthquake cycle in the Andaman Sumatra subduction zone, and localised deformation in the intraplate region and across the paleo rift regions. Besides these, GNSS measurements initiated in the Antarctica region have helped in understanding the plate motion and influence of seasonal variations on deformation. Another important by-product of the GNSS observations is the capabilities of these observations in understanding the ionospheric variations due to earthquake processes and also due to solar eclipse. We summarize these outcomes in this article.</abstract><cop>New Delhi</cop><pub>Geological Society of India</pub><doi>10.1007/s12594-021-1850-8</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7622
ispartof Journal of the Geological Society of India, 2021-10, Vol.97 (10), p.1207-1213
issn 0016-7622
0974-6889
language eng
recordid cdi_proquest_journals_2602675426
source Springer Link
subjects Deformation
Earth and Environmental Science
Earth Sciences
Earthquakes
Geodynamics
Geological hazards
Geology
Global navigation satellite system
Global positioning systems
GPS
Hazard assessment
Hydrogeology
Navigation
Navigational satellites
Plate boundaries
Plate motion
Plate tectonics
Plates (tectonics)
Positioning systems
Regions
Satellite observation
Seasonal variation
Seasonal variations
Seismic activity
Seismic hazard
Solar eclipses
Spatial variations
Subduction
Subduction (geology)
Subduction zones
Tectonics
Tectonophysics
title Constraining Plate Motion and Crustal Deformation from GNSS Measurements: CSIR-NGRI Contribution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T09%3A04%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20Plate%20Motion%20and%20Crustal%20Deformation%20from%20GNSS%20Measurements:%20CSIR-NGRI%20Contribution&rft.jtitle=Journal%20of%20the%20Geological%20Society%20of%20India&rft.au=Rajewar,%20S.%20K.&rft.date=2021-10-01&rft.volume=97&rft.issue=10&rft.spage=1207&rft.epage=1213&rft.pages=1207-1213&rft.issn=0016-7622&rft.eissn=0974-6889&rft_id=info:doi/10.1007/s12594-021-1850-8&rft_dat=%3Cproquest_cross%3E2602675426%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-f18ea2db33fe879579c5e122de02d2c0c6b4884d141b2435e4fbba1a74e6dd693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2602675426&rft_id=info:pmid/&rfr_iscdi=true