Loading…
Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution
Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate t...
Saved in:
Published in: | Mathematical problems in engineering 2021-11, Vol.2021, p.1-8 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2021 |
creator | Almazah, Mohammed M. A. Ismail, Muhammad |
description | Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods. |
doi_str_mv | 10.1155/2021/5806068 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2603590941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2603590941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khrk02y2T1KrR9QUbCinsJudkJTtpuapBT_vaktePM07-FhhnkROqfkmlIhRjnJ6UiUpCBFeYAGVBQsE5TLw5RJzjOas49jdBLCgiQpaDlAn6_QgY7W9dgZPDHGagt9xC-1r5cQweNJiHZZ_4oniHPXYuM8nm1c9mfewTbrrsO3NkSf4lafoiNTdwHO9nOI3u4ms_FDNn2-fxzfTDPNmIyZJAAlNQVvJRjQTSkFrVjZCslJlRPZNhwqVmtgvEmvyEoCCEoaUUlRA9NsiC52e1fefa0hRLVwa9-nkyovCBMVqThN6mqntHcheDBq5dNb_ltRorblqW15al9e4pc7Prd9W2_s__oHjFRudQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603590941</pqid></control><display><type>article</type><title>Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Almazah, Mohammed M. A. ; Ismail, Muhammad</creator><contributor>Gaggero, Mauro ; Mauro Gaggero</contributor><creatorcontrib>Almazah, Mohammed M. A. ; Ismail, Muhammad ; Gaggero, Mauro ; Mauro Gaggero</creatorcontrib><description>Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/5806068</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Efficiency ; Estimates ; Maximum likelihood estimation ; Maximum likelihood estimators ; Methods ; Parameter estimation ; Parameter modification ; Statistical analysis ; Weibull distribution</subject><ispartof>Mathematical problems in engineering, 2021-11, Vol.2021, p.1-8</ispartof><rights>Copyright © 2021 Mohammed M. A. Almazah and Muhammad Ismail.</rights><rights>Copyright © 2021 Mohammed M. A. Almazah and Muhammad Ismail. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3</citedby><cites>FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3</cites><orcidid>0000-0001-8427-8760 ; 0000-0002-5591-9511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2603590941/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2603590941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571,74875</link.rule.ids></links><search><contributor>Gaggero, Mauro</contributor><contributor>Mauro Gaggero</contributor><creatorcontrib>Almazah, Mohammed M. A.</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><title>Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution</title><title>Mathematical problems in engineering</title><description>Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods.</description><subject>Efficiency</subject><subject>Estimates</subject><subject>Maximum likelihood estimation</subject><subject>Maximum likelihood estimators</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Statistical analysis</subject><subject>Weibull distribution</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khrk02y2T1KrR9QUbCinsJudkJTtpuapBT_vaktePM07-FhhnkROqfkmlIhRjnJ6UiUpCBFeYAGVBQsE5TLw5RJzjOas49jdBLCgiQpaDlAn6_QgY7W9dgZPDHGagt9xC-1r5cQweNJiHZZ_4oniHPXYuM8nm1c9mfewTbrrsO3NkSf4lafoiNTdwHO9nOI3u4ms_FDNn2-fxzfTDPNmIyZJAAlNQVvJRjQTSkFrVjZCslJlRPZNhwqVmtgvEmvyEoCCEoaUUlRA9NsiC52e1fefa0hRLVwa9-nkyovCBMVqThN6mqntHcheDBq5dNb_ltRorblqW15al9e4pc7Prd9W2_s__oHjFRudQ</recordid><startdate>20211102</startdate><enddate>20211102</enddate><creator>Almazah, Mohammed M. A.</creator><creator>Ismail, Muhammad</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8427-8760</orcidid><orcidid>https://orcid.org/0000-0002-5591-9511</orcidid></search><sort><creationdate>20211102</creationdate><title>Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution</title><author>Almazah, Mohammed M. A. ; Ismail, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Efficiency</topic><topic>Estimates</topic><topic>Maximum likelihood estimation</topic><topic>Maximum likelihood estimators</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Statistical analysis</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almazah, Mohammed M. A.</creatorcontrib><creatorcontrib>Ismail, Muhammad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almazah, Mohammed M. A.</au><au>Ismail, Muhammad</au><au>Gaggero, Mauro</au><au>Mauro Gaggero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-11-02</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Several studies have considered various scheduling methods and reliability functions to determine the optimum maintenance time. These methods and functions correspond to the lowest cost by using the maximum likelihood estimator to evaluate the model parameters. However, this paper aims to estimate the parameters of the two-parameter Weibull distribution (α, β). The maximum likelihood estimation method, modified linear exponential loss function, and Wyatt-based regression method are used for the estimation of the parameters. Minimum mean square error (MSE) criterion is used to evaluate the relative efficiency of the estimators. The comparison of the different parameter estimation methods is conducted, and the efficiency of these methods is observed, both mathematically and experimentally. The simulation study is conducted for comparison of samples sizes (10, 50, 100, 150) based on the mean square error (MSE). It is concluded that the maximum likelihood method was found to be the most efficient method for all sample sizes used in the research because it achieved the least MSE compared with other methods.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/5806068</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8427-8760</orcidid><orcidid>https://orcid.org/0000-0002-5591-9511</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2021-11, Vol.2021, p.1-8 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2603590941 |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Efficiency Estimates Maximum likelihood estimation Maximum likelihood estimators Methods Parameter estimation Parameter modification Statistical analysis Weibull distribution |
title | Selection of Efficient Parameter Estimation Method for Two-Parameter Weibull Distribution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A50%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20of%20Efficient%20Parameter%20Estimation%20Method%20for%20Two-Parameter%20Weibull%20Distribution&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Almazah,%20Mohammed%20M.%20A.&rft.date=2021-11-02&rft.volume=2021&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/5806068&rft_dat=%3Cproquest_cross%3E2603590941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-70ee81f64d7efecb8751938d57409207db4e93ace34b147797ee510b5975ae3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2603590941&rft_id=info:pmid/&rfr_iscdi=true |