Loading…

Dipole‐bound states and substituent effects of Breslow intermediates in the enolate form

Breslow intermediates play crucial roles in both umpolung and redox reactions in N‐heterocyclic carbene catalysis. Compared to the well‐known nucleophilic character, the electronic structure of Breslow intermediates on the radical route is still unclear. We investigate the potential energy surfaces...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Chinese Chemical Society (Taipei) 2021-11, Vol.68 (11), p.2060-2070
Main Authors: Hsieh, Ming‐Hsiu, Huang, Gou‐Tao, Yu, Jen‐Shiang K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53
cites cdi_FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53
container_end_page 2070
container_issue 11
container_start_page 2060
container_title Journal of the Chinese Chemical Society (Taipei)
container_volume 68
creator Hsieh, Ming‐Hsiu
Huang, Gou‐Tao
Yu, Jen‐Shiang K.
description Breslow intermediates play crucial roles in both umpolung and redox reactions in N‐heterocyclic carbene catalysis. Compared to the well‐known nucleophilic character, the electronic structure of Breslow intermediates on the radical route is still unclear. We investigate the potential energy surfaces with high‐level ab initio methods for four typical Breslow intermediates in both of their enol and enolate forms. In the enol form, high energies of around 60 kcal/mol to the Rydberg‐like states and those higher than 120 kcal/mol to remove an electron demonstrate that the enol Breslow intermediates tend not to generate radicals unless strong oxidants are present. The low‐lying dipole‐bound states and small electron detachment energies in the enolate form in contrast show that the enolate Breslow intermediates are possible precursors to radicals. More importantly, metastable dipole‐bound states exist in the imidazole‐ and the triazole‐based enolate Breslow intermediates. Energies to detach one electron of several enolate Breslow intermediates reveal that the bulky and electron‐withdrawing groups stabilize the singlet ground states, which explains that the utilization of such substituents can lead to successful isolation for Breslow intermediates in experiments. Electronic structure of the enolate Breslow intermediates demonstrates that metastable dipole‐bound states could act as doorways to form radicals. Bulky and electron‐withdrawing substituents tend to stabilize the anionic ground states.
doi_str_mv 10.1002/jccs.202100310
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2603903696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2603903696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqWwMltiTjnbsVOPUP6rEgOwsFiJcxap0rjYjlA3PgKfkU9CShGMTHdPer87vUfIMYMJA-CnC2vjhAMfhGCwQ0acaZ4pmetdMgIAneVSqH1yEOMCIBdc6hF5vmhWvsXP94_K911NYyoTRlpu1r6KqUk9domic2hTpN7R84Cx9W-06RKGJdbNN9B0NL0gxc63g6bOh-Uh2XNlG_HoZ47J09Xl4-wmm99f387O5pkVrICssKrGae5qN3WSK1cLVjrklZWiqGuNijluWaGHiI7nErSyU1ZWXDuQzDopxuRke3cV_GuPMZmF70M3vDRcgdAglFaDa7J12eBjDOjMKjTLMqwNA7Ppz2z6M7_9DYDeAm9Ni-t_3OZuNnv4Y78A5sp2MQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603903696</pqid></control><display><type>article</type><title>Dipole‐bound states and substituent effects of Breslow intermediates in the enolate form</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hsieh, Ming‐Hsiu ; Huang, Gou‐Tao ; Yu, Jen‐Shiang K.</creator><creatorcontrib>Hsieh, Ming‐Hsiu ; Huang, Gou‐Tao ; Yu, Jen‐Shiang K.</creatorcontrib><description>Breslow intermediates play crucial roles in both umpolung and redox reactions in N‐heterocyclic carbene catalysis. Compared to the well‐known nucleophilic character, the electronic structure of Breslow intermediates on the radical route is still unclear. We investigate the potential energy surfaces with high‐level ab initio methods for four typical Breslow intermediates in both of their enol and enolate forms. In the enol form, high energies of around 60 kcal/mol to the Rydberg‐like states and those higher than 120 kcal/mol to remove an electron demonstrate that the enol Breslow intermediates tend not to generate radicals unless strong oxidants are present. The low‐lying dipole‐bound states and small electron detachment energies in the enolate form in contrast show that the enolate Breslow intermediates are possible precursors to radicals. More importantly, metastable dipole‐bound states exist in the imidazole‐ and the triazole‐based enolate Breslow intermediates. Energies to detach one electron of several enolate Breslow intermediates reveal that the bulky and electron‐withdrawing groups stabilize the singlet ground states, which explains that the utilization of such substituents can lead to successful isolation for Breslow intermediates in experiments. Electronic structure of the enolate Breslow intermediates demonstrates that metastable dipole‐bound states could act as doorways to form radicals. Bulky and electron‐withdrawing substituents tend to stabilize the anionic ground states.</description><identifier>ISSN: 0009-4536</identifier><identifier>EISSN: 2192-6549</identifier><identifier>DOI: 10.1002/jccs.202100310</identifier><language>eng</language><publisher>Weinheim: Wiley‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Breslow intermediate ; Dipoles ; dipole‐bound state ; Electronic structure ; Electrons ; Imidazole ; N‐heterocyclic carbene ; Oxidizing agents ; Potential energy ; radical ; Redox reactions</subject><ispartof>Journal of the Chinese Chemical Society (Taipei), 2021-11, Vol.68 (11), p.2060-2070</ispartof><rights>2021 The Chemical Society Located in Taipei &amp; Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53</citedby><cites>FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hsieh, Ming‐Hsiu</creatorcontrib><creatorcontrib>Huang, Gou‐Tao</creatorcontrib><creatorcontrib>Yu, Jen‐Shiang K.</creatorcontrib><title>Dipole‐bound states and substituent effects of Breslow intermediates in the enolate form</title><title>Journal of the Chinese Chemical Society (Taipei)</title><description>Breslow intermediates play crucial roles in both umpolung and redox reactions in N‐heterocyclic carbene catalysis. Compared to the well‐known nucleophilic character, the electronic structure of Breslow intermediates on the radical route is still unclear. We investigate the potential energy surfaces with high‐level ab initio methods for four typical Breslow intermediates in both of their enol and enolate forms. In the enol form, high energies of around 60 kcal/mol to the Rydberg‐like states and those higher than 120 kcal/mol to remove an electron demonstrate that the enol Breslow intermediates tend not to generate radicals unless strong oxidants are present. The low‐lying dipole‐bound states and small electron detachment energies in the enolate form in contrast show that the enolate Breslow intermediates are possible precursors to radicals. More importantly, metastable dipole‐bound states exist in the imidazole‐ and the triazole‐based enolate Breslow intermediates. Energies to detach one electron of several enolate Breslow intermediates reveal that the bulky and electron‐withdrawing groups stabilize the singlet ground states, which explains that the utilization of such substituents can lead to successful isolation for Breslow intermediates in experiments. Electronic structure of the enolate Breslow intermediates demonstrates that metastable dipole‐bound states could act as doorways to form radicals. Bulky and electron‐withdrawing substituents tend to stabilize the anionic ground states.</description><subject>Breslow intermediate</subject><subject>Dipoles</subject><subject>dipole‐bound state</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Imidazole</subject><subject>N‐heterocyclic carbene</subject><subject>Oxidizing agents</subject><subject>Potential energy</subject><subject>radical</subject><subject>Redox reactions</subject><issn>0009-4536</issn><issn>2192-6549</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqWwMltiTjnbsVOPUP6rEgOwsFiJcxap0rjYjlA3PgKfkU9CShGMTHdPer87vUfIMYMJA-CnC2vjhAMfhGCwQ0acaZ4pmetdMgIAneVSqH1yEOMCIBdc6hF5vmhWvsXP94_K911NYyoTRlpu1r6KqUk9domic2hTpN7R84Cx9W-06RKGJdbNN9B0NL0gxc63g6bOh-Uh2XNlG_HoZ47J09Xl4-wmm99f387O5pkVrICssKrGae5qN3WSK1cLVjrklZWiqGuNijluWaGHiI7nErSyU1ZWXDuQzDopxuRke3cV_GuPMZmF70M3vDRcgdAglFaDa7J12eBjDOjMKjTLMqwNA7Ppz2z6M7_9DYDeAm9Ni-t_3OZuNnv4Y78A5sp2MQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Hsieh, Ming‐Hsiu</creator><creator>Huang, Gou‐Tao</creator><creator>Yu, Jen‐Shiang K.</creator><general>Wiley‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>Dipole‐bound states and substituent effects of Breslow intermediates in the enolate form</title><author>Hsieh, Ming‐Hsiu ; Huang, Gou‐Tao ; Yu, Jen‐Shiang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Breslow intermediate</topic><topic>Dipoles</topic><topic>dipole‐bound state</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Imidazole</topic><topic>N‐heterocyclic carbene</topic><topic>Oxidizing agents</topic><topic>Potential energy</topic><topic>radical</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsieh, Ming‐Hsiu</creatorcontrib><creatorcontrib>Huang, Gou‐Tao</creatorcontrib><creatorcontrib>Yu, Jen‐Shiang K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Chinese Chemical Society (Taipei)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hsieh, Ming‐Hsiu</au><au>Huang, Gou‐Tao</au><au>Yu, Jen‐Shiang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dipole‐bound states and substituent effects of Breslow intermediates in the enolate form</atitle><jtitle>Journal of the Chinese Chemical Society (Taipei)</jtitle><date>2021-11</date><risdate>2021</risdate><volume>68</volume><issue>11</issue><spage>2060</spage><epage>2070</epage><pages>2060-2070</pages><issn>0009-4536</issn><eissn>2192-6549</eissn><abstract>Breslow intermediates play crucial roles in both umpolung and redox reactions in N‐heterocyclic carbene catalysis. Compared to the well‐known nucleophilic character, the electronic structure of Breslow intermediates on the radical route is still unclear. We investigate the potential energy surfaces with high‐level ab initio methods for four typical Breslow intermediates in both of their enol and enolate forms. In the enol form, high energies of around 60 kcal/mol to the Rydberg‐like states and those higher than 120 kcal/mol to remove an electron demonstrate that the enol Breslow intermediates tend not to generate radicals unless strong oxidants are present. The low‐lying dipole‐bound states and small electron detachment energies in the enolate form in contrast show that the enolate Breslow intermediates are possible precursors to radicals. More importantly, metastable dipole‐bound states exist in the imidazole‐ and the triazole‐based enolate Breslow intermediates. Energies to detach one electron of several enolate Breslow intermediates reveal that the bulky and electron‐withdrawing groups stabilize the singlet ground states, which explains that the utilization of such substituents can lead to successful isolation for Breslow intermediates in experiments. Electronic structure of the enolate Breslow intermediates demonstrates that metastable dipole‐bound states could act as doorways to form radicals. Bulky and electron‐withdrawing substituents tend to stabilize the anionic ground states.</abstract><cop>Weinheim</cop><pub>Wiley‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/jccs.202100310</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-4536
ispartof Journal of the Chinese Chemical Society (Taipei), 2021-11, Vol.68 (11), p.2060-2070
issn 0009-4536
2192-6549
language eng
recordid cdi_proquest_journals_2603903696
source Wiley-Blackwell Read & Publish Collection
subjects Breslow intermediate
Dipoles
dipole‐bound state
Electronic structure
Electrons
Imidazole
N‐heterocyclic carbene
Oxidizing agents
Potential energy
radical
Redox reactions
title Dipole‐bound states and substituent effects of Breslow intermediates in the enolate form
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dipole%E2%80%90bound%20states%20and%20substituent%20effects%20of%20Breslow%20intermediates%20in%20the%20enolate%20form&rft.jtitle=Journal%20of%20the%20Chinese%20Chemical%20Society%20(Taipei)&rft.au=Hsieh,%20Ming%E2%80%90Hsiu&rft.date=2021-11&rft.volume=68&rft.issue=11&rft.spage=2060&rft.epage=2070&rft.pages=2060-2070&rft.issn=0009-4536&rft.eissn=2192-6549&rft_id=info:doi/10.1002/jccs.202100310&rft_dat=%3Cproquest_cross%3E2603903696%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3170-7c6de84fdf8f526fd31afe2bc537dd9e61f2c179002f245096c81ab29f051cf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2603903696&rft_id=info:pmid/&rfr_iscdi=true