Loading…
DETERMINATION OF FORMATION REGIMES FOR BILAYER COBALT DYSPROSIUM INTERMETALIC SURFACE ALLOY
High tech industrial fields on modern development stage are in need of construction materials with an optimal ratio of volume and surface properties, along with low cost of material itself. As evidenced by studies, in order to give a set complex of properties to a workpiece that operates under speci...
Saved in:
Published in: | Eureka, Physics and Engineering (Online) Physics and Engineering (Online), 2019, Vol.6 (6), p.3-8 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High tech industrial fields on modern development stage are in need of construction materials with an optimal ratio of volume and surface properties, along with low cost of material itself. As evidenced by studies, in order to give a set complex of properties to a workpiece that operates under specific conditions, it is often sufficient to only modify its surface area. Over the course of studies, by means of gravimetric, influence of technological parameters (temperature and time samples are kept in the melt) on specific mass change of cobalt samples, that act as substrate, during electroless diffusive saturation with dysprosium in eutectic melt of lithium and potassium chlorides have been studied. A mathematical dependency was established for specific mass change of cobalt samples on time spent in melt for temperature range of 873–973 K. Composition of intermetallic coats obtained on surface of cobalt samples was studied means of EDX and SEM analyses. It was discovered, that for chosen temperature range, diffusion layers formed on surface of cobalt samples consists of two structural zones that correspond to Co-Dy and Cp2Dy phases. |
---|---|
ISSN: | 2461-4254 2461-4262 |
DOI: | 10.21303/2461-4262.2019.001011 |