Loading…

3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application

Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2022-03, Vol.139 (9), p.n/a
Main Authors: Marcatto, Vinicius Assis, Sant'Ana Pegorin, Giovana, Barbosa, Gustavo Franco, Herculano, Rondinelli Donizetti, Guerra, Nayrim Brizuela
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193
cites cdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193
container_end_page n/a
container_issue 9
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Marcatto, Vinicius Assis
Sant'Ana Pegorin, Giovana
Barbosa, Gustavo Franco
Herculano, Rondinelli Donizetti
Guerra, Nayrim Brizuela
description Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.
doi_str_mv 10.1002/app.51728
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604787345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604787345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazuxHS-r8pQq0QWsLb8iXLlxcBKV7jgCZ-QkGMqW1Yzm_2bmnwHgEqMZRojMVdfNKOakPgITjAQvKkbqYzDJGi5qIegpOOv7DUIYU8QmQJc3sEu-HZz9-vjsYtgHZQZvoDLewt6oponB9tBElRG488MrbNUwJhVgGrV2CYasvMMmJqh93DrrTdayj5CTwcf2HJw0KvTu4i9Owcvd7fPyoVg93T8uF6vCEMHrghOhtXCsQa4SpRBME-UoURaxuq6ostgxTa3GouRY8ZIaK1zJSsWYaKpcnYKrw9wuxbfR9YPcxDG1eaUkDFW85mVFM3V9oEyKfZ9cI_P5W5X2EiP580KZrcvfF2Z2fmB3Prj9_6BcrNeHjm_2H3Qm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604787345</pqid></control><display><type>article</type><title>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</title><source>Wiley</source><creator>Marcatto, Vinicius Assis ; Sant'Ana Pegorin, Giovana ; Barbosa, Gustavo Franco ; Herculano, Rondinelli Donizetti ; Guerra, Nayrim Brizuela</creator><creatorcontrib>Marcatto, Vinicius Assis ; Sant'Ana Pegorin, Giovana ; Barbosa, Gustavo Franco ; Herculano, Rondinelli Donizetti ; Guerra, Nayrim Brizuela</creatorcontrib><description>Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51728</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>biocompatibility ; Biological effects ; Biological properties ; biomaterials ; biomedical applications ; Biomedical materials ; Bones ; Compressive strength ; Infrared spectra ; Latex ; manufacturing ; Materials science ; Natural rubber ; Polylactic acid ; Polymers ; Pore size ; rubber ; Rubber products ; Scaffolds ; Three dimensional printing</subject><ispartof>Journal of applied polymer science, 2022-03, Vol.139 (9), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</citedby><cites>FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</cites><orcidid>0000-0002-2961-5178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marcatto, Vinicius Assis</creatorcontrib><creatorcontrib>Sant'Ana Pegorin, Giovana</creatorcontrib><creatorcontrib>Barbosa, Gustavo Franco</creatorcontrib><creatorcontrib>Herculano, Rondinelli Donizetti</creatorcontrib><creatorcontrib>Guerra, Nayrim Brizuela</creatorcontrib><title>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</title><title>Journal of applied polymer science</title><description>Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.</description><subject>biocompatibility</subject><subject>Biological effects</subject><subject>Biological properties</subject><subject>biomaterials</subject><subject>biomedical applications</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Compressive strength</subject><subject>Infrared spectra</subject><subject>Latex</subject><subject>manufacturing</subject><subject>Materials science</subject><subject>Natural rubber</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Pore size</subject><subject>rubber</subject><subject>Rubber products</subject><subject>Scaffolds</subject><subject>Three dimensional printing</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazuxHS-r8pQq0QWsLb8iXLlxcBKV7jgCZ-QkGMqW1Yzm_2bmnwHgEqMZRojMVdfNKOakPgITjAQvKkbqYzDJGi5qIegpOOv7DUIYU8QmQJc3sEu-HZz9-vjsYtgHZQZvoDLewt6oponB9tBElRG488MrbNUwJhVgGrV2CYasvMMmJqh93DrrTdayj5CTwcf2HJw0KvTu4i9Owcvd7fPyoVg93T8uF6vCEMHrghOhtXCsQa4SpRBME-UoURaxuq6ostgxTa3GouRY8ZIaK1zJSsWYaKpcnYKrw9wuxbfR9YPcxDG1eaUkDFW85mVFM3V9oEyKfZ9cI_P5W5X2EiP580KZrcvfF2Z2fmB3Prj9_6BcrNeHjm_2H3Qm</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Marcatto, Vinicius Assis</creator><creator>Sant'Ana Pegorin, Giovana</creator><creator>Barbosa, Gustavo Franco</creator><creator>Herculano, Rondinelli Donizetti</creator><creator>Guerra, Nayrim Brizuela</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2961-5178</orcidid></search><sort><creationdate>20220305</creationdate><title>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</title><author>Marcatto, Vinicius Assis ; Sant'Ana Pegorin, Giovana ; Barbosa, Gustavo Franco ; Herculano, Rondinelli Donizetti ; Guerra, Nayrim Brizuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biocompatibility</topic><topic>Biological effects</topic><topic>Biological properties</topic><topic>biomaterials</topic><topic>biomedical applications</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Compressive strength</topic><topic>Infrared spectra</topic><topic>Latex</topic><topic>manufacturing</topic><topic>Materials science</topic><topic>Natural rubber</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Pore size</topic><topic>rubber</topic><topic>Rubber products</topic><topic>Scaffolds</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcatto, Vinicius Assis</creatorcontrib><creatorcontrib>Sant'Ana Pegorin, Giovana</creatorcontrib><creatorcontrib>Barbosa, Gustavo Franco</creatorcontrib><creatorcontrib>Herculano, Rondinelli Donizetti</creatorcontrib><creatorcontrib>Guerra, Nayrim Brizuela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcatto, Vinicius Assis</au><au>Sant'Ana Pegorin, Giovana</au><au>Barbosa, Gustavo Franco</au><au>Herculano, Rondinelli Donizetti</au><au>Guerra, Nayrim Brizuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-03-05</date><risdate>2022</risdate><volume>139</volume><issue>9</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.51728</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2961-5178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-03, Vol.139 (9), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2604787345
source Wiley
subjects biocompatibility
Biological effects
Biological properties
biomaterials
biomedical applications
Biomedical materials
Bones
Compressive strength
Infrared spectra
Latex
manufacturing
Materials science
Natural rubber
Polylactic acid
Polymers
Pore size
rubber
Rubber products
Scaffolds
Three dimensional printing
title 3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%E2%80%90polylactic%20acid%20scaffolds%20coated%20with%20natural%20rubber%20latex%20for%20biomedical%20application&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Marcatto,%20Vinicius%20Assis&rft.date=2022-03-05&rft.volume=139&rft.issue=9&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51728&rft_dat=%3Cproquest_cross%3E2604787345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604787345&rft_id=info:pmid/&rfr_iscdi=true