Loading…
3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application
Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context,...
Saved in:
Published in: | Journal of applied polymer science 2022-03, Vol.139 (9), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193 |
---|---|
cites | cdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193 |
container_end_page | n/a |
container_issue | 9 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 139 |
creator | Marcatto, Vinicius Assis Sant'Ana Pegorin, Giovana Barbosa, Gustavo Franco Herculano, Rondinelli Donizetti Guerra, Nayrim Brizuela |
description | Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects. |
doi_str_mv | 10.1002/app.51728 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604787345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604787345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazuxHS-r8pQq0QWsLb8iXLlxcBKV7jgCZ-QkGMqW1Yzm_2bmnwHgEqMZRojMVdfNKOakPgITjAQvKkbqYzDJGi5qIegpOOv7DUIYU8QmQJc3sEu-HZz9-vjsYtgHZQZvoDLewt6oponB9tBElRG488MrbNUwJhVgGrV2CYasvMMmJqh93DrrTdayj5CTwcf2HJw0KvTu4i9Owcvd7fPyoVg93T8uF6vCEMHrghOhtXCsQa4SpRBME-UoURaxuq6ostgxTa3GouRY8ZIaK1zJSsWYaKpcnYKrw9wuxbfR9YPcxDG1eaUkDFW85mVFM3V9oEyKfZ9cI_P5W5X2EiP580KZrcvfF2Z2fmB3Prj9_6BcrNeHjm_2H3Qm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604787345</pqid></control><display><type>article</type><title>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</title><source>Wiley</source><creator>Marcatto, Vinicius Assis ; Sant'Ana Pegorin, Giovana ; Barbosa, Gustavo Franco ; Herculano, Rondinelli Donizetti ; Guerra, Nayrim Brizuela</creator><creatorcontrib>Marcatto, Vinicius Assis ; Sant'Ana Pegorin, Giovana ; Barbosa, Gustavo Franco ; Herculano, Rondinelli Donizetti ; Guerra, Nayrim Brizuela</creatorcontrib><description>Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51728</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>biocompatibility ; Biological effects ; Biological properties ; biomaterials ; biomedical applications ; Biomedical materials ; Bones ; Compressive strength ; Infrared spectra ; Latex ; manufacturing ; Materials science ; Natural rubber ; Polylactic acid ; Polymers ; Pore size ; rubber ; Rubber products ; Scaffolds ; Three dimensional printing</subject><ispartof>Journal of applied polymer science, 2022-03, Vol.139 (9), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</citedby><cites>FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</cites><orcidid>0000-0002-2961-5178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marcatto, Vinicius Assis</creatorcontrib><creatorcontrib>Sant'Ana Pegorin, Giovana</creatorcontrib><creatorcontrib>Barbosa, Gustavo Franco</creatorcontrib><creatorcontrib>Herculano, Rondinelli Donizetti</creatorcontrib><creatorcontrib>Guerra, Nayrim Brizuela</creatorcontrib><title>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</title><title>Journal of applied polymer science</title><description>Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.</description><subject>biocompatibility</subject><subject>Biological effects</subject><subject>Biological properties</subject><subject>biomaterials</subject><subject>biomedical applications</subject><subject>Biomedical materials</subject><subject>Bones</subject><subject>Compressive strength</subject><subject>Infrared spectra</subject><subject>Latex</subject><subject>manufacturing</subject><subject>Materials science</subject><subject>Natural rubber</subject><subject>Polylactic acid</subject><subject>Polymers</subject><subject>Pore size</subject><subject>rubber</subject><subject>Rubber products</subject><subject>Scaffolds</subject><subject>Three dimensional printing</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqWw4AaWWLFIazuxHS-r8pQq0QWsLb8iXLlxcBKV7jgCZ-QkGMqW1Yzm_2bmnwHgEqMZRojMVdfNKOakPgITjAQvKkbqYzDJGi5qIegpOOv7DUIYU8QmQJc3sEu-HZz9-vjsYtgHZQZvoDLewt6oponB9tBElRG488MrbNUwJhVgGrV2CYasvMMmJqh93DrrTdayj5CTwcf2HJw0KvTu4i9Owcvd7fPyoVg93T8uF6vCEMHrghOhtXCsQa4SpRBME-UoURaxuq6ostgxTa3GouRY8ZIaK1zJSsWYaKpcnYKrw9wuxbfR9YPcxDG1eaUkDFW85mVFM3V9oEyKfZ9cI_P5W5X2EiP580KZrcvfF2Z2fmB3Prj9_6BcrNeHjm_2H3Qm</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Marcatto, Vinicius Assis</creator><creator>Sant'Ana Pegorin, Giovana</creator><creator>Barbosa, Gustavo Franco</creator><creator>Herculano, Rondinelli Donizetti</creator><creator>Guerra, Nayrim Brizuela</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2961-5178</orcidid></search><sort><creationdate>20220305</creationdate><title>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</title><author>Marcatto, Vinicius Assis ; Sant'Ana Pegorin, Giovana ; Barbosa, Gustavo Franco ; Herculano, Rondinelli Donizetti ; Guerra, Nayrim Brizuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biocompatibility</topic><topic>Biological effects</topic><topic>Biological properties</topic><topic>biomaterials</topic><topic>biomedical applications</topic><topic>Biomedical materials</topic><topic>Bones</topic><topic>Compressive strength</topic><topic>Infrared spectra</topic><topic>Latex</topic><topic>manufacturing</topic><topic>Materials science</topic><topic>Natural rubber</topic><topic>Polylactic acid</topic><topic>Polymers</topic><topic>Pore size</topic><topic>rubber</topic><topic>Rubber products</topic><topic>Scaffolds</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcatto, Vinicius Assis</creatorcontrib><creatorcontrib>Sant'Ana Pegorin, Giovana</creatorcontrib><creatorcontrib>Barbosa, Gustavo Franco</creatorcontrib><creatorcontrib>Herculano, Rondinelli Donizetti</creatorcontrib><creatorcontrib>Guerra, Nayrim Brizuela</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcatto, Vinicius Assis</au><au>Sant'Ana Pegorin, Giovana</au><au>Barbosa, Gustavo Franco</au><au>Herculano, Rondinelli Donizetti</au><au>Guerra, Nayrim Brizuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-03-05</date><risdate>2022</risdate><volume>139</volume><issue>9</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Three‐dimensional (3D) printing is a rapidly growing technology and plays an emerging role in several biomedical applications. Polylactic acid (PLA) is one of the most common materials in 3D printing, however, it is chemically inert due to the absence of reactive side chain groups. In this context, in this work, the PLA scaffolds with two different geometries were produced and coated with natural rubber latex (NRL) extracted from the rubber tree Hevea brasiliensis. NRL presents bioactive substances that are related to its biological properties. The results revealed scaffolds with interconnected pores and pores sizes from 600 to 1300 μm. The NRL coatings caused a decrease in pore size. Infrared spectra showed that 2 NRL layers were more efficient in coverage. Compressive strength values obtained are in agreement with the spongy bones value (22–24 MPa for crossbar and 20–22 MPa for roundbar cube). Finally, the hemolytic activity of the PLA scaffold was 3%, while the scaffolds coated with 1 and 2 NRL layers presented values of 0%, indicating a potential use in biomedical applications due to the absence of hemolytic effects.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.51728</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2961-5178</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2022-03, Vol.139 (9), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2604787345 |
source | Wiley |
subjects | biocompatibility Biological effects Biological properties biomaterials biomedical applications Biomedical materials Bones Compressive strength Infrared spectra Latex manufacturing Materials science Natural rubber Polylactic acid Polymers Pore size rubber Rubber products Scaffolds Three dimensional printing |
title | 3D printed‐polylactic acid scaffolds coated with natural rubber latex for biomedical application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printed%E2%80%90polylactic%20acid%20scaffolds%20coated%20with%20natural%20rubber%20latex%20for%20biomedical%20application&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Marcatto,%20Vinicius%20Assis&rft.date=2022-03-05&rft.volume=139&rft.issue=9&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51728&rft_dat=%3Cproquest_cross%3E2604787345%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2978-729bb9e6f0e493996b2ae52ad068845ad1e6b5db19371a735cd9e363a669f4193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604787345&rft_id=info:pmid/&rfr_iscdi=true |