Loading…

An Improved Evolutionary Algorithm for Data Mining and Knowledge Discovery

Recent advancements in computer technologies for data processing, collection, and storage have offered several chances to improve the abilities in production, services, communication, and researches. Data mining (DM) is an interdisciplinary field commonly used to extract useful patterns from the dat...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua materials & continua, 2022, Vol.71 (1), p.1233-1247
Main Authors: Siddiqa, Ayesha, Abbas Zilqurnain Naqvi, Syed, Ahsan, Muhammad, Ditta, Allah, Alquhayz, Hani, A. Khan, M., Adnan Khan, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recent advancements in computer technologies for data processing, collection, and storage have offered several chances to improve the abilities in production, services, communication, and researches. Data mining (DM) is an interdisciplinary field commonly used to extract useful patterns from the data. At the same time, educational data mining (EDM) is a kind of DM concept, which finds use in educational sector. Recently, artificial intelligence (AI) techniques can be used for mining a large amount of data. At the same time, in DM, the feature selection process becomes necessary to generate subset of features and can be solved by the use of metaheuristic optimization algorithms. With this motivation, this paper presents an improved evolutionary algorithm based feature subsets election with neuro-fuzzy classification (IEAFSS-NFC) for data mining in the education sector. The presented IEAFSS-NFC model involves data pre-processing, feature selection, and classification. Besides, the Chaotic Whale Optimization Algorithm (CWOA) is used for the selection of the highly related feature subsets to accomplish improved classification results. Then, Neuro-Fuzzy Classification (NFC) technique is employed for the classification of education data. The IEAFSS-NFC model is tested against a benchmark Student Performance DataSet from the UCI repository. The simulation outcome has shown that the IEAFSS-NFC model is superior to other methods.
ISSN:1546-2226
1546-2218
1546-2226
DOI:10.32604/cmc.2022.021652