Loading…

Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments

This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physicall...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-11
Main Authors: Soeseno, Jonathan Hans, Ying-Sheng, Luo, Chen, Trista Pei-Chun, Wei-Chao, Chen
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Soeseno, Jonathan Hans
Ying-Sheng, Luo
Chen, Trista Pei-Chun
Wei-Chao, Chen
description This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.
doi_str_mv 10.48550/arxiv.2111.15072
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2605012400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605012400</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-8e9788255485e157de2db7649926381d20f6aaa4013921f752e22584f92ea7ea3</originalsourceid><addsrcrecordid>eNotj1tLwzAYhoMgOOZ-gHcBr1uTL02bele2eYCJgsXb8W1NXUaWzCQbDv-89XD1wMvLeyDkirO8UFKyGwyf5pgD5zznklVwRkYgBM9UAXBBJjFuGWNQViClGJGvNqCLJhnv6JP_Ratd9OGWNnSGCbNZMEftaLPfB4_rDe19oG86REzGaoquo1PvUvDW4moQmnftUqTG0ZfNKZo1Wnuir2Z3sJh0R-fuaIJ3ux_TJTnv0UY9-eeYtHfzdvqQLZ7vH6fNIkMJLFO6rpQa1g73NJdVp6FbVWVR11AKxTtgfYmIBeOiBt5XEjSAVEVfg8ZKoxiT67_Y4cDHQce03PpDcEPjEkomGYeCMfENsU5fUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605012400</pqid></control><display><type>article</type><title>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</title><source>ProQuest - Publicly Available Content Database</source><creator>Soeseno, Jonathan Hans ; Ying-Sheng, Luo ; Chen, Trista Pei-Chun ; Wei-Chao, Chen</creator><creatorcontrib>Soeseno, Jonathan Hans ; Ying-Sheng, Luo ; Chen, Trista Pei-Chun ; Wei-Chao, Chen</creatorcontrib><description>This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2111.15072</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis ; Motion planning ; Simulation ; Task complexity ; Tensors</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2605012400?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Soeseno, Jonathan Hans</creatorcontrib><creatorcontrib>Ying-Sheng, Luo</creatorcontrib><creatorcontrib>Chen, Trista Pei-Chun</creatorcontrib><creatorcontrib>Wei-Chao, Chen</creatorcontrib><title>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</title><title>arXiv.org</title><description>This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.</description><subject>Mathematical analysis</subject><subject>Motion planning</subject><subject>Simulation</subject><subject>Task complexity</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj1tLwzAYhoMgOOZ-gHcBr1uTL02bele2eYCJgsXb8W1NXUaWzCQbDv-89XD1wMvLeyDkirO8UFKyGwyf5pgD5zznklVwRkYgBM9UAXBBJjFuGWNQViClGJGvNqCLJhnv6JP_Ratd9OGWNnSGCbNZMEftaLPfB4_rDe19oG86REzGaoquo1PvUvDW4moQmnftUqTG0ZfNKZo1Wnuir2Z3sJh0R-fuaIJ3ux_TJTnv0UY9-eeYtHfzdvqQLZ7vH6fNIkMJLFO6rpQa1g73NJdVp6FbVWVR11AKxTtgfYmIBeOiBt5XEjSAVEVfg8ZKoxiT67_Y4cDHQce03PpDcEPjEkomGYeCMfENsU5fUg</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Soeseno, Jonathan Hans</creator><creator>Ying-Sheng, Luo</creator><creator>Chen, Trista Pei-Chun</creator><creator>Wei-Chao, Chen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211130</creationdate><title>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</title><author>Soeseno, Jonathan Hans ; Ying-Sheng, Luo ; Chen, Trista Pei-Chun ; Wei-Chao, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-8e9788255485e157de2db7649926381d20f6aaa4013921f752e22584f92ea7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Motion planning</topic><topic>Simulation</topic><topic>Task complexity</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Soeseno, Jonathan Hans</creatorcontrib><creatorcontrib>Ying-Sheng, Luo</creatorcontrib><creatorcontrib>Chen, Trista Pei-Chun</creatorcontrib><creatorcontrib>Wei-Chao, Chen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soeseno, Jonathan Hans</au><au>Ying-Sheng, Luo</au><au>Chen, Trista Pei-Chun</au><au>Wei-Chao, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</atitle><jtitle>arXiv.org</jtitle><date>2021-11-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2111.15072</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2605012400
source ProQuest - Publicly Available Content Database
subjects Mathematical analysis
Motion planning
Simulation
Task complexity
Tensors
title Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Motion%20Tensor:%20A%20Data-Driven%20Approach%20for%20Versatile%20and%20Controllable%20Agents%20in%20Physically%20Simulated%20Environments&rft.jtitle=arXiv.org&rft.au=Soeseno,%20Jonathan%20Hans&rft.date=2021-11-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2111.15072&rft_dat=%3Cproquest%3E2605012400%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-8e9788255485e157de2db7649926381d20f6aaa4013921f752e22584f92ea7ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605012400&rft_id=info:pmid/&rfr_iscdi=true