Loading…
Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments
This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physicall...
Saved in:
Published in: | arXiv.org 2021-11 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Soeseno, Jonathan Hans Ying-Sheng, Luo Chen, Trista Pei-Chun Wei-Chao, Chen |
description | This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives. |
doi_str_mv | 10.48550/arxiv.2111.15072 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2605012400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605012400</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-8e9788255485e157de2db7649926381d20f6aaa4013921f752e22584f92ea7ea3</originalsourceid><addsrcrecordid>eNotj1tLwzAYhoMgOOZ-gHcBr1uTL02bele2eYCJgsXb8W1NXUaWzCQbDv-89XD1wMvLeyDkirO8UFKyGwyf5pgD5zznklVwRkYgBM9UAXBBJjFuGWNQViClGJGvNqCLJhnv6JP_Ratd9OGWNnSGCbNZMEftaLPfB4_rDe19oG86REzGaoquo1PvUvDW4moQmnftUqTG0ZfNKZo1Wnuir2Z3sJh0R-fuaIJ3ux_TJTnv0UY9-eeYtHfzdvqQLZ7vH6fNIkMJLFO6rpQa1g73NJdVp6FbVWVR11AKxTtgfYmIBeOiBt5XEjSAVEVfg8ZKoxiT67_Y4cDHQce03PpDcEPjEkomGYeCMfENsU5fUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605012400</pqid></control><display><type>article</type><title>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</title><source>ProQuest - Publicly Available Content Database</source><creator>Soeseno, Jonathan Hans ; Ying-Sheng, Luo ; Chen, Trista Pei-Chun ; Wei-Chao, Chen</creator><creatorcontrib>Soeseno, Jonathan Hans ; Ying-Sheng, Luo ; Chen, Trista Pei-Chun ; Wei-Chao, Chen</creatorcontrib><description>This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2111.15072</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Mathematical analysis ; Motion planning ; Simulation ; Task complexity ; Tensors</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2605012400?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Soeseno, Jonathan Hans</creatorcontrib><creatorcontrib>Ying-Sheng, Luo</creatorcontrib><creatorcontrib>Chen, Trista Pei-Chun</creatorcontrib><creatorcontrib>Wei-Chao, Chen</creatorcontrib><title>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</title><title>arXiv.org</title><description>This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.</description><subject>Mathematical analysis</subject><subject>Motion planning</subject><subject>Simulation</subject><subject>Task complexity</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj1tLwzAYhoMgOOZ-gHcBr1uTL02bele2eYCJgsXb8W1NXUaWzCQbDv-89XD1wMvLeyDkirO8UFKyGwyf5pgD5zznklVwRkYgBM9UAXBBJjFuGWNQViClGJGvNqCLJhnv6JP_Ratd9OGWNnSGCbNZMEftaLPfB4_rDe19oG86REzGaoquo1PvUvDW4moQmnftUqTG0ZfNKZo1Wnuir2Z3sJh0R-fuaIJ3ux_TJTnv0UY9-eeYtHfzdvqQLZ7vH6fNIkMJLFO6rpQa1g73NJdVp6FbVWVR11AKxTtgfYmIBeOiBt5XEjSAVEVfg8ZKoxiT67_Y4cDHQce03PpDcEPjEkomGYeCMfENsU5fUg</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Soeseno, Jonathan Hans</creator><creator>Ying-Sheng, Luo</creator><creator>Chen, Trista Pei-Chun</creator><creator>Wei-Chao, Chen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211130</creationdate><title>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</title><author>Soeseno, Jonathan Hans ; Ying-Sheng, Luo ; Chen, Trista Pei-Chun ; Wei-Chao, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-8e9788255485e157de2db7649926381d20f6aaa4013921f752e22584f92ea7ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematical analysis</topic><topic>Motion planning</topic><topic>Simulation</topic><topic>Task complexity</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Soeseno, Jonathan Hans</creatorcontrib><creatorcontrib>Ying-Sheng, Luo</creatorcontrib><creatorcontrib>Chen, Trista Pei-Chun</creatorcontrib><creatorcontrib>Wei-Chao, Chen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soeseno, Jonathan Hans</au><au>Ying-Sheng, Luo</au><au>Chen, Trista Pei-Chun</au><au>Wei-Chao, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments</atitle><jtitle>arXiv.org</jtitle><date>2021-11-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper proposes the Transition Motion Tensor, a data-driven framework that creates novel and physically accurate transitions outside of the motion dataset. It enables simulated characters to adopt new motion skills efficiently and robustly without modifying existing ones. Given several physically simulated controllers specializing in different motions, the tensor serves as a temporal guideline to transition between them. Through querying the tensor for transitions that best fit user-defined preferences, we can create a unified controller capable of producing novel transitions and solving complex tasks that may require multiple motions to work coherently. We apply our framework on both quadrupeds and bipeds, perform quantitative and qualitative evaluations on transition quality, and demonstrate its capability of tackling complex motion planning problems while following user control directives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2111.15072</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2605012400 |
source | ProQuest - Publicly Available Content Database |
subjects | Mathematical analysis Motion planning Simulation Task complexity Tensors |
title | Transition Motion Tensor: A Data-Driven Approach for Versatile and Controllable Agents in Physically Simulated Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20Motion%20Tensor:%20A%20Data-Driven%20Approach%20for%20Versatile%20and%20Controllable%20Agents%20in%20Physically%20Simulated%20Environments&rft.jtitle=arXiv.org&rft.au=Soeseno,%20Jonathan%20Hans&rft.date=2021-11-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2111.15072&rft_dat=%3Cproquest%3E2605012400%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-8e9788255485e157de2db7649926381d20f6aaa4013921f752e22584f92ea7ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605012400&rft_id=info:pmid/&rfr_iscdi=true |