Loading…

Acoustic Properties of Steel Bridge Base Metals

Ultrasonic testing (UT) is typically conducted to locate and classify (or rate) defects in welds during bridge fabrication. Variations in acoustic properties such as attenuation and velocity can have an impact on the UT results. Defects in welds may be missed, incorrectly rated, or incorrectly locat...

Full description

Saved in:
Bibliographic Details
Published in:Research in nondestructive evaluation 2021-09, Vol.32 (5), p.238-262
Main Authors: Schroeder, Curtis J., Connor, Robert J., Crowley, Bridget M., Washer, Glenn A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasonic testing (UT) is typically conducted to locate and classify (or rate) defects in welds during bridge fabrication. Variations in acoustic properties such as attenuation and velocity can have an impact on the UT results. Defects in welds may be missed, incorrectly rated, or incorrectly located, and false calls may occur that require unnecessary repairs. The objective of the research was to assess the impact of variations in acoustic properties on the ultrasonic testing of bridge steel. This paper describes the results of acoustic property measurements of 14 different material heats representing various grades of steel plate used in bridges. The attenuation of various bridge base materials was evaluated using 2.25 MHz and 5 MHz transducers. Shear wave velocities and acoustic anisotropy ratios were also determined for some of these steels using normal incidence shear wave and electromagnetic acoustic (EMAT) transducers. The experimental results as well as CIVA-UT simulation software were used to develop recommended changes to the AWS D1.5 Bridge Welding Code in order to limit the amplitude and location measurement errors for weld flaws.
ISSN:0934-9847
1432-2110
DOI:10.1080/09349847.2021.1999544