Loading…
Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix
We study an n -dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the...
Saved in:
Published in: | Ukrainian mathematical journal 2021-10, Vol.73 (5), p.746-757 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53 |
container_end_page | 757 |
container_issue | 5 |
container_start_page | 746 |
container_title | Ukrainian mathematical journal |
container_volume | 73 |
creator | Yevstafyeva, V. V. |
description | We study an
n
-dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example. |
doi_str_mv | 10.1007/s11253-021-01957-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2605634457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695507273</galeid><sourcerecordid>A695507273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS3USk0DX4CTpZ5N_Wdtx0eEAq0EBQE9W47XG4y8dmp7C7nx0THdot6qOTxp9H4zo3kAHBN8QjCWXwshlDOEKUGYKC5RdwAWhEuGFJPiA1hg3BHEleKfwOdSHjFu2EouwMv62ZfqonUwDfD-KaGb5GOF18X6EExNeQ_vUpiqT7G8WQy8dcHs4Y8UzVRTTGOaCrzbtyEjfPL1AV5NofpdcHDtty7-NmFy76AJzTmOrmZv4ZVp8nwIPg4mFHf0V5fg5_n6_uwbury--H52eoks46uKqDBCrRyV3cZYLDa9Isx0VLJeDAOVRmCmBOkN6QjZONWrnmLMjO1X3A7ccbYEX-a5u5x-Ta5U_ZimHNtKTQXmgnVde9cSnMyurQlO-zikmo1t1bvR2xTd4Fv_VCjOsWzbG0BnwOZUSnaD3mU_mrzXBOu3aPQcjW7R6D_R6K5BbIZKM8ety_9u-Q_1Cko4kpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605634457</pqid></control><display><type>article</type><title>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</title><source>Springer Link</source><creator>Yevstafyeva, V. V.</creator><creatorcontrib>Yevstafyeva, V. V.</creatorcontrib><description>We study an
n
-dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-021-01957-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Differential equations ; Eigenvalues ; Existence theorems ; Fixed points (mathematics) ; Geometry ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Ordinary differential equations ; Periodic variations ; Perturbation ; Relay ; Statistics ; Switches</subject><ispartof>Ukrainian mathematical journal, 2021-10, Vol.73 (5), p.746-757</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</citedby><cites>FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yevstafyeva, V. V.</creatorcontrib><title>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We study an
n
-dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Ordinary differential equations</subject><subject>Periodic variations</subject><subject>Perturbation</subject><subject>Relay</subject><subject>Statistics</subject><subject>Switches</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS3USk0DX4CTpZ5N_Wdtx0eEAq0EBQE9W47XG4y8dmp7C7nx0THdot6qOTxp9H4zo3kAHBN8QjCWXwshlDOEKUGYKC5RdwAWhEuGFJPiA1hg3BHEleKfwOdSHjFu2EouwMv62ZfqonUwDfD-KaGb5GOF18X6EExNeQ_vUpiqT7G8WQy8dcHs4Y8UzVRTTGOaCrzbtyEjfPL1AV5NofpdcHDtty7-NmFy76AJzTmOrmZv4ZVp8nwIPg4mFHf0V5fg5_n6_uwbury--H52eoks46uKqDBCrRyV3cZYLDa9Isx0VLJeDAOVRmCmBOkN6QjZONWrnmLMjO1X3A7ccbYEX-a5u5x-Ta5U_ZimHNtKTQXmgnVde9cSnMyurQlO-zikmo1t1bvR2xTd4Fv_VCjOsWzbG0BnwOZUSnaD3mU_mrzXBOu3aPQcjW7R6D_R6K5BbIZKM8ety_9u-Q_1Cko4kpI</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Yevstafyeva, V. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</title><author>Yevstafyeva, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Ordinary differential equations</topic><topic>Periodic variations</topic><topic>Perturbation</topic><topic>Relay</topic><topic>Statistics</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yevstafyeva, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yevstafyeva, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>73</volume><issue>5</issue><spage>746</spage><epage>757</epage><pages>746-757</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We study an
n
-dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-021-01957-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2021-10, Vol.73 (5), p.746-757 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_2605634457 |
source | Springer Link |
subjects | Algebra Analysis Applications of Mathematics Differential equations Eigenvalues Existence theorems Fixed points (mathematics) Geometry Mathematics Mathematics and Statistics Matrices (mathematics) Ordinary differential equations Periodic variations Perturbation Relay Statistics Switches |
title | Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Two-Point%20Oscillatory%20Solutions%20of%20a%20Relay%20Nonautonomous%20System%20with%20Multiple%20Eigenvalue%20of%20a%20Real%20Symmetric%20Matrix&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Yevstafyeva,%20V.%20V.&rft.date=2021-10-01&rft.volume=73&rft.issue=5&rft.spage=746&rft.epage=757&rft.pages=746-757&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-021-01957-4&rft_dat=%3Cgale_proqu%3EA695507273%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605634457&rft_id=info:pmid/&rft_galeid=A695507273&rfr_iscdi=true |