Loading…

Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix

We study an n -dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the...

Full description

Saved in:
Bibliographic Details
Published in:Ukrainian mathematical journal 2021-10, Vol.73 (5), p.746-757
Main Author: Yevstafyeva, V. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53
cites cdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53
container_end_page 757
container_issue 5
container_start_page 746
container_title Ukrainian mathematical journal
container_volume 73
creator Yevstafyeva, V. V.
description We study an n -dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.
doi_str_mv 10.1007/s11253-021-01957-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2605634457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A695507273</galeid><sourcerecordid>A695507273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</originalsourceid><addsrcrecordid>eNp9kU9PGzEQxS3USk0DX4CTpZ5N_Wdtx0eEAq0EBQE9W47XG4y8dmp7C7nx0THdot6qOTxp9H4zo3kAHBN8QjCWXwshlDOEKUGYKC5RdwAWhEuGFJPiA1hg3BHEleKfwOdSHjFu2EouwMv62ZfqonUwDfD-KaGb5GOF18X6EExNeQ_vUpiqT7G8WQy8dcHs4Y8UzVRTTGOaCrzbtyEjfPL1AV5NofpdcHDtty7-NmFy76AJzTmOrmZv4ZVp8nwIPg4mFHf0V5fg5_n6_uwbury--H52eoks46uKqDBCrRyV3cZYLDa9Isx0VLJeDAOVRmCmBOkN6QjZONWrnmLMjO1X3A7ccbYEX-a5u5x-Ta5U_ZimHNtKTQXmgnVde9cSnMyurQlO-zikmo1t1bvR2xTd4Fv_VCjOsWzbG0BnwOZUSnaD3mU_mrzXBOu3aPQcjW7R6D_R6K5BbIZKM8ety_9u-Q_1Cko4kpI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605634457</pqid></control><display><type>article</type><title>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</title><source>Springer Link</source><creator>Yevstafyeva, V. V.</creator><creatorcontrib>Yevstafyeva, V. V.</creatorcontrib><description>We study an n -dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-021-01957-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Differential equations ; Eigenvalues ; Existence theorems ; Fixed points (mathematics) ; Geometry ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Ordinary differential equations ; Periodic variations ; Perturbation ; Relay ; Statistics ; Switches</subject><ispartof>Ukrainian mathematical journal, 2021-10, Vol.73 (5), p.746-757</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</citedby><cites>FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yevstafyeva, V. V.</creatorcontrib><title>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>We study an n -dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Differential equations</subject><subject>Eigenvalues</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Ordinary differential equations</subject><subject>Periodic variations</subject><subject>Perturbation</subject><subject>Relay</subject><subject>Statistics</subject><subject>Switches</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9PGzEQxS3USk0DX4CTpZ5N_Wdtx0eEAq0EBQE9W47XG4y8dmp7C7nx0THdot6qOTxp9H4zo3kAHBN8QjCWXwshlDOEKUGYKC5RdwAWhEuGFJPiA1hg3BHEleKfwOdSHjFu2EouwMv62ZfqonUwDfD-KaGb5GOF18X6EExNeQ_vUpiqT7G8WQy8dcHs4Y8UzVRTTGOaCrzbtyEjfPL1AV5NofpdcHDtty7-NmFy76AJzTmOrmZv4ZVp8nwIPg4mFHf0V5fg5_n6_uwbury--H52eoks46uKqDBCrRyV3cZYLDa9Isx0VLJeDAOVRmCmBOkN6QjZONWrnmLMjO1X3A7ccbYEX-a5u5x-Ta5U_ZimHNtKTQXmgnVde9cSnMyurQlO-zikmo1t1bvR2xTd4Fv_VCjOsWzbG0BnwOZUSnaD3mU_mrzXBOu3aPQcjW7R6D_R6K5BbIZKM8ety_9u-Q_1Cko4kpI</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Yevstafyeva, V. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</title><author>Yevstafyeva, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Differential equations</topic><topic>Eigenvalues</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Ordinary differential equations</topic><topic>Periodic variations</topic><topic>Perturbation</topic><topic>Relay</topic><topic>Statistics</topic><topic>Switches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yevstafyeva, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yevstafyeva, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>73</volume><issue>5</issue><spage>746</spage><epage>757</epage><pages>746-757</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>We study an n -dimensional system of ordinary differential equations with hysteresis type relay nonlinearity and a periodic perturbation function on the right-hand side. It is supposed that the matrix of the system is real and symmetric and, moreover, it has an eigenvalue of multiplicity two. In the phase space of the system, we consider continuous bounded oscillatory solutions with two fixed points and the same time of return to each of these points. For these solutions, we prove the existence and nonexistence theorems. For a three-dimensional system, these results are illustrated by a numerical example.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-021-01957-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2021-10, Vol.73 (5), p.746-757
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_2605634457
source Springer Link
subjects Algebra
Analysis
Applications of Mathematics
Differential equations
Eigenvalues
Existence theorems
Fixed points (mathematics)
Geometry
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Ordinary differential equations
Periodic variations
Perturbation
Relay
Statistics
Switches
title Existence of Two-Point Oscillatory Solutions of a Relay Nonautonomous System with Multiple Eigenvalue of a Real Symmetric Matrix
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A31%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20Two-Point%20Oscillatory%20Solutions%20of%20a%20Relay%20Nonautonomous%20System%20with%20Multiple%20Eigenvalue%20of%20a%20Real%20Symmetric%20Matrix&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Yevstafyeva,%20V.%20V.&rft.date=2021-10-01&rft.volume=73&rft.issue=5&rft.spage=746&rft.epage=757&rft.pages=746-757&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-021-01957-4&rft_dat=%3Cgale_proqu%3EA695507273%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-26a698e274bac06bd913a4273d6ff27a603961da1411be9d9d2003acd85cf5e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605634457&rft_id=info:pmid/&rft_galeid=A695507273&rfr_iscdi=true