Loading…

Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data

Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.11789-11799
Main Authors: Marzi, David, Gamba, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3
cites cdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3
container_end_page 11799
container_issue
container_start_page 11789
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Marzi, David
Gamba, Paolo
description Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.
doi_str_mv 10.1109/JSTARS.2021.3127748
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2605704653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9613744</ieee_id><doaj_id>oai_doaj_org_article_f55757aa890b4c45874b748bb046fc45</doaj_id><sourcerecordid>2605704653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEuPjF3CpxLnDTpymPY7voU1I2xDHKGkT1Km0Je0O_Hs6Ou1iy9b7vrYexm4QpoiQ3b2tN7PVesqB41QgV4rSEzbhKDFGKeQpm2AmshgJ6JxddN0WIOEqExM2m9eVqYvo0_QuRPdN8RstTduW9Vf00e3rclf1Ze--2yaYKlq7ui9rV8UYrWer6NH05oqdeVN17vrQL9nH89Pm4TVevL_MH2aLOCdI-zhDnvsMvCJPIAG4Jcl9nksnBKXSSSsJgdIiIcQEvOWusJYb4Z1Jlbfiks3H3KIxW92G8tuEX92YUv8vmvClTejLvHLaS6mkMibNwFJOMlVkByTWAiV-mIes2zGrDc3PznW93ja7UA_va56AVINOikElRlUemq4Lzh-vIug9dz1y13vu-sB9cN2MrtI5d3RkCQpFJP4AtaR8TA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605704653</pqid></control><display><type>article</type><title>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</title><source>Alma/SFX Local Collection</source><creator>Marzi, David ; Gamba, Paolo</creator><creatorcontrib>Marzi, David ; Gamba, Paolo</creatorcontrib><description>Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3127748</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -means ; Climate change ; Climate prediction ; Climate studies ; Clustering ; Data mining ; Earth ; Feature extraction ; Geomorphology ; Inland waters ; Land cover ; Land surface ; Land use ; Mapping ; Optical sensors ; Resolution ; Sentinel-1 ; Spatial discrimination ; Spatial resolution ; Surface morphology ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; time series analysis ; Water bodies ; water mapping</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.11789-11799</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</citedby><cites>FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</cites><orcidid>0000-0002-3580-2711 ; 0000-0002-9576-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Marzi, David</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><title>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -means</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Climate studies</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Earth</subject><subject>Feature extraction</subject><subject>Geomorphology</subject><subject>Inland waters</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Land use</subject><subject>Mapping</subject><subject>Optical sensors</subject><subject>Resolution</subject><subject>Sentinel-1</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Surface morphology</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>time series analysis</subject><subject>Water bodies</subject><subject>water mapping</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1PwzAMhiMEEuPjF3CpxLnDTpymPY7voU1I2xDHKGkT1Km0Je0O_Hs6Ou1iy9b7vrYexm4QpoiQ3b2tN7PVesqB41QgV4rSEzbhKDFGKeQpm2AmshgJ6JxddN0WIOEqExM2m9eVqYvo0_QuRPdN8RstTduW9Vf00e3rclf1Ze--2yaYKlq7ui9rV8UYrWer6NH05oqdeVN17vrQL9nH89Pm4TVevL_MH2aLOCdI-zhDnvsMvCJPIAG4Jcl9nksnBKXSSSsJgdIiIcQEvOWusJYb4Z1Jlbfiks3H3KIxW92G8tuEX92YUv8vmvClTejLvHLaS6mkMibNwFJOMlVkByTWAiV-mIes2zGrDc3PznW93ja7UA_va56AVINOikElRlUemq4Lzh-vIug9dz1y13vu-sB9cN2MrtI5d3RkCQpFJP4AtaR8TA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Marzi, David</creator><creator>Gamba, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3580-2711</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid></search><sort><creationdate>2021</creationdate><title>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</title><author>Marzi, David ; Gamba, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;k -means</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Climate studies</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Earth</topic><topic>Feature extraction</topic><topic>Geomorphology</topic><topic>Inland waters</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Land use</topic><topic>Mapping</topic><topic>Optical sensors</topic><topic>Resolution</topic><topic>Sentinel-1</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Surface morphology</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>time series analysis</topic><topic>Water bodies</topic><topic>water mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzi, David</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzi, David</au><au>Gamba, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>11789</spage><epage>11799</epage><pages>11789-11799</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3127748</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3580-2711</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.11789-11799
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2605704653
source Alma/SFX Local Collection
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means
Climate change
Climate prediction
Climate studies
Clustering
Data mining
Earth
Feature extraction
Geomorphology
Inland waters
Land cover
Land surface
Land use
Mapping
Optical sensors
Resolution
Sentinel-1
Spatial discrimination
Spatial resolution
Surface morphology
Synthetic aperture radar
synthetic aperture radar (SAR)
time series analysis
Water bodies
water mapping
title Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inland%20Water%20Body%20Mapping%20Using%20Multitemporal%20Sentinel-1%20SAR%20Data&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Marzi,%20David&rft.date=2021&rft.volume=14&rft.spage=11789&rft.epage=11799&rft.pages=11789-11799&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3127748&rft_dat=%3Cproquest_ieee_%3E2605704653%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605704653&rft_id=info:pmid/&rft_ieee_id=9613744&rfr_iscdi=true