Loading…
Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data
Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is...
Saved in:
Published in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.11789-11799 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3 |
container_end_page | 11799 |
container_issue | |
container_start_page | 11789 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Marzi, David Gamba, Paolo |
description | Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details. |
doi_str_mv | 10.1109/JSTARS.2021.3127748 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2605704653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9613744</ieee_id><doaj_id>oai_doaj_org_article_f55757aa890b4c45874b748bb046fc45</doaj_id><sourcerecordid>2605704653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEuPjF3CpxLnDTpymPY7voU1I2xDHKGkT1Km0Je0O_Hs6Ou1iy9b7vrYexm4QpoiQ3b2tN7PVesqB41QgV4rSEzbhKDFGKeQpm2AmshgJ6JxddN0WIOEqExM2m9eVqYvo0_QuRPdN8RstTduW9Vf00e3rclf1Ze--2yaYKlq7ui9rV8UYrWer6NH05oqdeVN17vrQL9nH89Pm4TVevL_MH2aLOCdI-zhDnvsMvCJPIAG4Jcl9nksnBKXSSSsJgdIiIcQEvOWusJYb4Z1Jlbfiks3H3KIxW92G8tuEX92YUv8vmvClTejLvHLaS6mkMibNwFJOMlVkByTWAiV-mIes2zGrDc3PznW93ja7UA_va56AVINOikElRlUemq4Lzh-vIug9dz1y13vu-sB9cN2MrtI5d3RkCQpFJP4AtaR8TA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605704653</pqid></control><display><type>article</type><title>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</title><source>Alma/SFX Local Collection</source><creator>Marzi, David ; Gamba, Paolo</creator><creatorcontrib>Marzi, David ; Gamba, Paolo</creatorcontrib><description>Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3127748</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means ; Climate change ; Climate prediction ; Climate studies ; Clustering ; Data mining ; Earth ; Feature extraction ; Geomorphology ; Inland waters ; Land cover ; Land surface ; Land use ; Mapping ; Optical sensors ; Resolution ; Sentinel-1 ; Spatial discrimination ; Spatial resolution ; Surface morphology ; Synthetic aperture radar ; synthetic aperture radar (SAR) ; time series analysis ; Water bodies ; water mapping</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.11789-11799</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</citedby><cites>FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</cites><orcidid>0000-0002-3580-2711 ; 0000-0002-9576-6337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Marzi, David</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><title>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Climate studies</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Earth</subject><subject>Feature extraction</subject><subject>Geomorphology</subject><subject>Inland waters</subject><subject>Land cover</subject><subject>Land surface</subject><subject>Land use</subject><subject>Mapping</subject><subject>Optical sensors</subject><subject>Resolution</subject><subject>Sentinel-1</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Surface morphology</subject><subject>Synthetic aperture radar</subject><subject>synthetic aperture radar (SAR)</subject><subject>time series analysis</subject><subject>Water bodies</subject><subject>water mapping</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNo9kE1PwzAMhiMEEuPjF3CpxLnDTpymPY7voU1I2xDHKGkT1Km0Je0O_Hs6Ou1iy9b7vrYexm4QpoiQ3b2tN7PVesqB41QgV4rSEzbhKDFGKeQpm2AmshgJ6JxddN0WIOEqExM2m9eVqYvo0_QuRPdN8RstTduW9Vf00e3rclf1Ze--2yaYKlq7ui9rV8UYrWer6NH05oqdeVN17vrQL9nH89Pm4TVevL_MH2aLOCdI-zhDnvsMvCJPIAG4Jcl9nksnBKXSSSsJgdIiIcQEvOWusJYb4Z1Jlbfiks3H3KIxW92G8tuEX92YUv8vmvClTejLvHLaS6mkMibNwFJOMlVkByTWAiV-mIes2zGrDc3PznW93ja7UA_va56AVINOikElRlUemq4Lzh-vIug9dz1y13vu-sB9cN2MrtI5d3RkCQpFJP4AtaR8TA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Marzi, David</creator><creator>Gamba, Paolo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3580-2711</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid></search><sort><creationdate>2021</creationdate><title>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</title><author>Marzi, David ; Gamba, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Climate studies</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Earth</topic><topic>Feature extraction</topic><topic>Geomorphology</topic><topic>Inland waters</topic><topic>Land cover</topic><topic>Land surface</topic><topic>Land use</topic><topic>Mapping</topic><topic>Optical sensors</topic><topic>Resolution</topic><topic>Sentinel-1</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Surface morphology</topic><topic>Synthetic aperture radar</topic><topic>synthetic aperture radar (SAR)</topic><topic>time series analysis</topic><topic>Water bodies</topic><topic>water mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzi, David</creatorcontrib><creatorcontrib>Gamba, Paolo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzi, David</au><au>Gamba, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>11789</spage><epage>11799</epage><pages>11789-11799</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Climate change studies require increasingly detailed information on land cover and land use, to precisely model and predict climate based on their status and changes. A fundamental land cover type that needs to be constantly monitored by the climate change community is water, but currently there is a lack of high-resolution water body maps at the global scale. In this article, we present a fully automated procedure for the extraction of fine spatial resolution (10 m) inland water land cover maps for any region of the Earth by means of a relatively simple k -means clustering model applied to multitemporal features extracted from Sentinel-1 SAR sequences. Indeed, due to heavy cloud coverage conditions in many locations, multispectral sensors are not suitable for global water body mapping. For this reason, in this work, we deal only with SAR data, and specifically with multitemporal Sentinel-1 data sequences. The experimental results, obtained for three geographical areas selected because of their wide diversity in terms of geomorphology and climate, show an almost complete consistency with existing datasets, and improve them thanks to their finer spatial details.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3127748</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3580-2711</orcidid><orcidid>https://orcid.org/0000-0002-9576-6337</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.11789-11799 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2605704653 |
source | Alma/SFX Local Collection |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">k -means Climate change Climate prediction Climate studies Clustering Data mining Earth Feature extraction Geomorphology Inland waters Land cover Land surface Land use Mapping Optical sensors Resolution Sentinel-1 Spatial discrimination Spatial resolution Surface morphology Synthetic aperture radar synthetic aperture radar (SAR) time series analysis Water bodies water mapping |
title | Inland Water Body Mapping Using Multitemporal Sentinel-1 SAR Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A25%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inland%20Water%20Body%20Mapping%20Using%20Multitemporal%20Sentinel-1%20SAR%20Data&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Marzi,%20David&rft.date=2021&rft.volume=14&rft.spage=11789&rft.epage=11799&rft.pages=11789-11799&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3127748&rft_dat=%3Cproquest_ieee_%3E2605704653%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-912cf90f74f405002b452fcc5e33485e5b541048d641160fb2edbb2a3fea87fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605704653&rft_id=info:pmid/&rft_ieee_id=9613744&rfr_iscdi=true |