Loading…
Lifshitz black holes in four-dimensional Critical Gravity
In this work, we study the existence of asymptotically Lifshitz black holes in Critical Gravity in four dimensions with a negative cosmological constant under two scenarios: First, including dilatonic fields as the matter source, where we find an asymptotically Lifshitz solution for a fixed value of...
Saved in:
Published in: | arXiv.org 2022-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bravo-Gaete, Moises Maria Montserrat Juarez-Aubry Velazquez-Rodriguez, Gerardo |
description | In this work, we study the existence of asymptotically Lifshitz black holes in Critical Gravity in four dimensions with a negative cosmological constant under two scenarios: First, including dilatonic fields as the matter source, where we find an asymptotically Lifshitz solution for a fixed value of the dynamical exponent \(z=4\). As a second case, we also added a non-minimally coupled scalar field \(\Phi\) with a potential given by a mass term and a quartic term. Using this approach, we found a solution for \(z\) defined in the interval \((1,4)\), recovering the Schwarzchild-Anti-de Sitter case with planar base manifold in the isotropic limit. Moreover, when we analyzed the limiting case \(z=4\), we found that there exists an additional solution that can be interpreted as a stealth configuration in which the stealth field is overflying the \(z=4\) solution without the non-minimally coupled field \(\Phi\). Finally, we studied the non-trivial thermodynamics of these new anisotropic solutions and found that they all satisfy the First Law of Thermodynamics as well as the Smarr relation. We were also able to determine that the non-stealth configuration is thermodynamically preferred in this case. |
doi_str_mv | 10.48550/arxiv.2112.01483 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2605773870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605773870</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-19de41769298a279b33472269bbfa91eb6c59a5558f855f292dcb26ace4d0a033</originalsourceid><addsrcrecordid>eNotzk1Lw0AUheFBECy1P8BdwHXinTvfSwlahUA33Zc7yQydGhPNpEX99QZ0dd7V4WHsjkMlrVLwQNNXulTIOVbApRVXbIVC8NJKxBu2yfkEAKgNKiVWzDUp5mOafwrfU_tWHMc-5CINRRzPU9ml9zDkNA7UF_WU5tQusZ3okubvW3Ydqc9h879rtn9-2tcvZbPbvtaPTUkKoeSuC5Ib7dBZQuO8ENIgaud9JMeD161ypJSycdFHdNi1HjW1QXZAIMSa3f_dfkzj5znk-XBaZAsoH1CDMkZYA-IX3SZHwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605773870</pqid></control><display><type>article</type><title>Lifshitz black holes in four-dimensional Critical Gravity</title><source>Publicly Available Content Database</source><creator>Bravo-Gaete, Moises ; Maria Montserrat Juarez-Aubry ; Velazquez-Rodriguez, Gerardo</creator><creatorcontrib>Bravo-Gaete, Moises ; Maria Montserrat Juarez-Aubry ; Velazquez-Rodriguez, Gerardo</creatorcontrib><description>In this work, we study the existence of asymptotically Lifshitz black holes in Critical Gravity in four dimensions with a negative cosmological constant under two scenarios: First, including dilatonic fields as the matter source, where we find an asymptotically Lifshitz solution for a fixed value of the dynamical exponent \(z=4\). As a second case, we also added a non-minimally coupled scalar field \(\Phi\) with a potential given by a mass term and a quartic term. Using this approach, we found a solution for \(z\) defined in the interval \((1,4)\), recovering the Schwarzchild-Anti-de Sitter case with planar base manifold in the isotropic limit. Moreover, when we analyzed the limiting case \(z=4\), we found that there exists an additional solution that can be interpreted as a stealth configuration in which the stealth field is overflying the \(z=4\) solution without the non-minimally coupled field \(\Phi\). Finally, we studied the non-trivial thermodynamics of these new anisotropic solutions and found that they all satisfy the First Law of Thermodynamics as well as the Smarr relation. We were also able to determine that the non-stealth configuration is thermodynamically preferred in this case.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2112.01483</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Configurations ; Cosmological constant ; Dilatons ; Energy conservation law ; Scalars ; Thermodynamics</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2605773870?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Bravo-Gaete, Moises</creatorcontrib><creatorcontrib>Maria Montserrat Juarez-Aubry</creatorcontrib><creatorcontrib>Velazquez-Rodriguez, Gerardo</creatorcontrib><title>Lifshitz black holes in four-dimensional Critical Gravity</title><title>arXiv.org</title><description>In this work, we study the existence of asymptotically Lifshitz black holes in Critical Gravity in four dimensions with a negative cosmological constant under two scenarios: First, including dilatonic fields as the matter source, where we find an asymptotically Lifshitz solution for a fixed value of the dynamical exponent \(z=4\). As a second case, we also added a non-minimally coupled scalar field \(\Phi\) with a potential given by a mass term and a quartic term. Using this approach, we found a solution for \(z\) defined in the interval \((1,4)\), recovering the Schwarzchild-Anti-de Sitter case with planar base manifold in the isotropic limit. Moreover, when we analyzed the limiting case \(z=4\), we found that there exists an additional solution that can be interpreted as a stealth configuration in which the stealth field is overflying the \(z=4\) solution without the non-minimally coupled field \(\Phi\). Finally, we studied the non-trivial thermodynamics of these new anisotropic solutions and found that they all satisfy the First Law of Thermodynamics as well as the Smarr relation. We were also able to determine that the non-stealth configuration is thermodynamically preferred in this case.</description><subject>Asymptotic properties</subject><subject>Configurations</subject><subject>Cosmological constant</subject><subject>Dilatons</subject><subject>Energy conservation law</subject><subject>Scalars</subject><subject>Thermodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzk1Lw0AUheFBECy1P8BdwHXinTvfSwlahUA33Zc7yQydGhPNpEX99QZ0dd7V4WHsjkMlrVLwQNNXulTIOVbApRVXbIVC8NJKxBu2yfkEAKgNKiVWzDUp5mOafwrfU_tWHMc-5CINRRzPU9ml9zDkNA7UF_WU5tQusZ3okubvW3Ydqc9h879rtn9-2tcvZbPbvtaPTUkKoeSuC5Ib7dBZQuO8ENIgaud9JMeD161ypJSycdFHdNi1HjW1QXZAIMSa3f_dfkzj5znk-XBaZAsoH1CDMkZYA-IX3SZHwg</recordid><startdate>20220316</startdate><enddate>20220316</enddate><creator>Bravo-Gaete, Moises</creator><creator>Maria Montserrat Juarez-Aubry</creator><creator>Velazquez-Rodriguez, Gerardo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220316</creationdate><title>Lifshitz black holes in four-dimensional Critical Gravity</title><author>Bravo-Gaete, Moises ; Maria Montserrat Juarez-Aubry ; Velazquez-Rodriguez, Gerardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-19de41769298a279b33472269bbfa91eb6c59a5558f855f292dcb26ace4d0a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic properties</topic><topic>Configurations</topic><topic>Cosmological constant</topic><topic>Dilatons</topic><topic>Energy conservation law</topic><topic>Scalars</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bravo-Gaete, Moises</creatorcontrib><creatorcontrib>Maria Montserrat Juarez-Aubry</creatorcontrib><creatorcontrib>Velazquez-Rodriguez, Gerardo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bravo-Gaete, Moises</au><au>Maria Montserrat Juarez-Aubry</au><au>Velazquez-Rodriguez, Gerardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifshitz black holes in four-dimensional Critical Gravity</atitle><jtitle>arXiv.org</jtitle><date>2022-03-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this work, we study the existence of asymptotically Lifshitz black holes in Critical Gravity in four dimensions with a negative cosmological constant under two scenarios: First, including dilatonic fields as the matter source, where we find an asymptotically Lifshitz solution for a fixed value of the dynamical exponent \(z=4\). As a second case, we also added a non-minimally coupled scalar field \(\Phi\) with a potential given by a mass term and a quartic term. Using this approach, we found a solution for \(z\) defined in the interval \((1,4)\), recovering the Schwarzchild-Anti-de Sitter case with planar base manifold in the isotropic limit. Moreover, when we analyzed the limiting case \(z=4\), we found that there exists an additional solution that can be interpreted as a stealth configuration in which the stealth field is overflying the \(z=4\) solution without the non-minimally coupled field \(\Phi\). Finally, we studied the non-trivial thermodynamics of these new anisotropic solutions and found that they all satisfy the First Law of Thermodynamics as well as the Smarr relation. We were also able to determine that the non-stealth configuration is thermodynamically preferred in this case.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2112.01483</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2605773870 |
source | Publicly Available Content Database |
subjects | Asymptotic properties Configurations Cosmological constant Dilatons Energy conservation law Scalars Thermodynamics |
title | Lifshitz black holes in four-dimensional Critical Gravity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifshitz%20black%20holes%20in%20four-dimensional%20Critical%20Gravity&rft.jtitle=arXiv.org&rft.au=Bravo-Gaete,%20Moises&rft.date=2022-03-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2112.01483&rft_dat=%3Cproquest%3E2605773870%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-19de41769298a279b33472269bbfa91eb6c59a5558f855f292dcb26ace4d0a033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605773870&rft_id=info:pmid/&rfr_iscdi=true |