Loading…
A General Language Assistant as a Laboratory for Alignment
Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and eval...
Saved in:
Published in: | arXiv.org 2021-12 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Askell, Amanda Bai, Yuntao Chen, Anna Drain, Dawn Ganguli, Deep Henighan, Tom Jones, Andy Nicholas, Joseph Mann, Ben DasSarma, Nova Nelson Elhage Hatfield-Dodds, Zac Hernandez, Danny Jackson Kernion Ndousse, Kamal Olsson, Catherine Amodei, Dario Brown, Tom Clark, Jack McCandlish, Sam Olah, Chris Kaplan, Jared |
description | Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2605773955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605773955</sourcerecordid><originalsourceid>FETCH-proquest_journals_26057739553</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMgWLTvcMG5EBPTqFsQfwZH93KFNLTERHOTwbe3gw_g9ME5B74Zq4SUm2a3FWLBaqKRcy5aLZSSFTsYuNhgE3q4YXAFnQVDNFDGkAEJcOKPmDDH9IE-JjB-cOFpQ16xeY-ebP3bJVufT_fjtXml-C6WcjfGksKkOtFypbXcT5f_VV9icDY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605773955</pqid></control><display><type>article</type><title>A General Language Assistant as a Laboratory for Alignment</title><source>Publicly Available Content (ProQuest)</source><creator>Askell, Amanda ; Bai, Yuntao ; Chen, Anna ; Drain, Dawn ; Ganguli, Deep ; Henighan, Tom ; Jones, Andy ; Nicholas, Joseph ; Mann, Ben ; DasSarma, Nova ; Nelson Elhage ; Hatfield-Dodds, Zac ; Hernandez, Danny ; Jackson Kernion ; Ndousse, Kamal ; Olsson, Catherine ; Amodei, Dario ; Brown, Tom ; Clark, Jack ; McCandlish, Sam ; Olah, Chris ; Kaplan, Jared</creator><creatorcontrib>Askell, Amanda ; Bai, Yuntao ; Chen, Anna ; Drain, Dawn ; Ganguli, Deep ; Henighan, Tom ; Jones, Andy ; Nicholas, Joseph ; Mann, Ben ; DasSarma, Nova ; Nelson Elhage ; Hatfield-Dodds, Zac ; Hernandez, Danny ; Jackson Kernion ; Ndousse, Kamal ; Olsson, Catherine ; Amodei, Dario ; Brown, Tom ; Clark, Jack ; McCandlish, Sam ; Olah, Chris ; Kaplan, Jared</creatorcontrib><description>Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Discrimination ; Learning ; Modelling ; Preferences ; Training</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2605773955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Askell, Amanda</creatorcontrib><creatorcontrib>Bai, Yuntao</creatorcontrib><creatorcontrib>Chen, Anna</creatorcontrib><creatorcontrib>Drain, Dawn</creatorcontrib><creatorcontrib>Ganguli, Deep</creatorcontrib><creatorcontrib>Henighan, Tom</creatorcontrib><creatorcontrib>Jones, Andy</creatorcontrib><creatorcontrib>Nicholas, Joseph</creatorcontrib><creatorcontrib>Mann, Ben</creatorcontrib><creatorcontrib>DasSarma, Nova</creatorcontrib><creatorcontrib>Nelson Elhage</creatorcontrib><creatorcontrib>Hatfield-Dodds, Zac</creatorcontrib><creatorcontrib>Hernandez, Danny</creatorcontrib><creatorcontrib>Jackson Kernion</creatorcontrib><creatorcontrib>Ndousse, Kamal</creatorcontrib><creatorcontrib>Olsson, Catherine</creatorcontrib><creatorcontrib>Amodei, Dario</creatorcontrib><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Clark, Jack</creatorcontrib><creatorcontrib>McCandlish, Sam</creatorcontrib><creatorcontrib>Olah, Chris</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><title>A General Language Assistant as a Laboratory for Alignment</title><title>arXiv.org</title><description>Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.</description><subject>Alignment</subject><subject>Discrimination</subject><subject>Learning</subject><subject>Modelling</subject><subject>Preferences</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjb0KwjAURoMgWLTvcMG5EBPTqFsQfwZH93KFNLTERHOTwbe3gw_g9ME5B74Zq4SUm2a3FWLBaqKRcy5aLZSSFTsYuNhgE3q4YXAFnQVDNFDGkAEJcOKPmDDH9IE-JjB-cOFpQ16xeY-ebP3bJVufT_fjtXml-C6WcjfGksKkOtFypbXcT5f_VV9icDY4</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Askell, Amanda</creator><creator>Bai, Yuntao</creator><creator>Chen, Anna</creator><creator>Drain, Dawn</creator><creator>Ganguli, Deep</creator><creator>Henighan, Tom</creator><creator>Jones, Andy</creator><creator>Nicholas, Joseph</creator><creator>Mann, Ben</creator><creator>DasSarma, Nova</creator><creator>Nelson Elhage</creator><creator>Hatfield-Dodds, Zac</creator><creator>Hernandez, Danny</creator><creator>Jackson Kernion</creator><creator>Ndousse, Kamal</creator><creator>Olsson, Catherine</creator><creator>Amodei, Dario</creator><creator>Brown, Tom</creator><creator>Clark, Jack</creator><creator>McCandlish, Sam</creator><creator>Olah, Chris</creator><creator>Kaplan, Jared</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211209</creationdate><title>A General Language Assistant as a Laboratory for Alignment</title><author>Askell, Amanda ; Bai, Yuntao ; Chen, Anna ; Drain, Dawn ; Ganguli, Deep ; Henighan, Tom ; Jones, Andy ; Nicholas, Joseph ; Mann, Ben ; DasSarma, Nova ; Nelson Elhage ; Hatfield-Dodds, Zac ; Hernandez, Danny ; Jackson Kernion ; Ndousse, Kamal ; Olsson, Catherine ; Amodei, Dario ; Brown, Tom ; Clark, Jack ; McCandlish, Sam ; Olah, Chris ; Kaplan, Jared</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26057739553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alignment</topic><topic>Discrimination</topic><topic>Learning</topic><topic>Modelling</topic><topic>Preferences</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Askell, Amanda</creatorcontrib><creatorcontrib>Bai, Yuntao</creatorcontrib><creatorcontrib>Chen, Anna</creatorcontrib><creatorcontrib>Drain, Dawn</creatorcontrib><creatorcontrib>Ganguli, Deep</creatorcontrib><creatorcontrib>Henighan, Tom</creatorcontrib><creatorcontrib>Jones, Andy</creatorcontrib><creatorcontrib>Nicholas, Joseph</creatorcontrib><creatorcontrib>Mann, Ben</creatorcontrib><creatorcontrib>DasSarma, Nova</creatorcontrib><creatorcontrib>Nelson Elhage</creatorcontrib><creatorcontrib>Hatfield-Dodds, Zac</creatorcontrib><creatorcontrib>Hernandez, Danny</creatorcontrib><creatorcontrib>Jackson Kernion</creatorcontrib><creatorcontrib>Ndousse, Kamal</creatorcontrib><creatorcontrib>Olsson, Catherine</creatorcontrib><creatorcontrib>Amodei, Dario</creatorcontrib><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Clark, Jack</creatorcontrib><creatorcontrib>McCandlish, Sam</creatorcontrib><creatorcontrib>Olah, Chris</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askell, Amanda</au><au>Bai, Yuntao</au><au>Chen, Anna</au><au>Drain, Dawn</au><au>Ganguli, Deep</au><au>Henighan, Tom</au><au>Jones, Andy</au><au>Nicholas, Joseph</au><au>Mann, Ben</au><au>DasSarma, Nova</au><au>Nelson Elhage</au><au>Hatfield-Dodds, Zac</au><au>Hernandez, Danny</au><au>Jackson Kernion</au><au>Ndousse, Kamal</au><au>Olsson, Catherine</au><au>Amodei, Dario</au><au>Brown, Tom</au><au>Clark, Jack</au><au>McCandlish, Sam</au><au>Olah, Chris</au><au>Kaplan, Jared</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A General Language Assistant as a Laboratory for Alignment</atitle><jtitle>arXiv.org</jtitle><date>2021-12-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2605773955 |
source | Publicly Available Content (ProQuest) |
subjects | Alignment Discrimination Learning Modelling Preferences Training |
title | A General Language Assistant as a Laboratory for Alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20General%20Language%20Assistant%20as%20a%20Laboratory%20for%20Alignment&rft.jtitle=arXiv.org&rft.au=Askell,%20Amanda&rft.date=2021-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2605773955%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26057739553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605773955&rft_id=info:pmid/&rfr_iscdi=true |