Loading…

A General Language Assistant as a Laboratory for Alignment

Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and eval...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-12
Main Authors: Askell, Amanda, Bai, Yuntao, Chen, Anna, Drain, Dawn, Ganguli, Deep, Henighan, Tom, Jones, Andy, Nicholas, Joseph, Mann, Ben, DasSarma, Nova, Nelson Elhage, Hatfield-Dodds, Zac, Hernandez, Danny, Jackson Kernion, Ndousse, Kamal, Olsson, Catherine, Amodei, Dario, Brown, Tom, Clark, Jack, McCandlish, Sam, Olah, Chris, Kaplan, Jared
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Askell, Amanda
Bai, Yuntao
Chen, Anna
Drain, Dawn
Ganguli, Deep
Henighan, Tom
Jones, Andy
Nicholas, Joseph
Mann, Ben
DasSarma, Nova
Nelson Elhage
Hatfield-Dodds, Zac
Hernandez, Danny
Jackson Kernion
Ndousse, Kamal
Olsson, Catherine
Amodei, Dario
Brown, Tom
Clark, Jack
McCandlish, Sam
Olah, Chris
Kaplan, Jared
description Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2605773955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605773955</sourcerecordid><originalsourceid>FETCH-proquest_journals_26057739553</originalsourceid><addsrcrecordid>eNqNjb0KwjAURoMgWLTvcMG5EBPTqFsQfwZH93KFNLTERHOTwbe3gw_g9ME5B74Zq4SUm2a3FWLBaqKRcy5aLZSSFTsYuNhgE3q4YXAFnQVDNFDGkAEJcOKPmDDH9IE-JjB-cOFpQ16xeY-ebP3bJVufT_fjtXml-C6WcjfGksKkOtFypbXcT5f_VV9icDY4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605773955</pqid></control><display><type>article</type><title>A General Language Assistant as a Laboratory for Alignment</title><source>Publicly Available Content (ProQuest)</source><creator>Askell, Amanda ; Bai, Yuntao ; Chen, Anna ; Drain, Dawn ; Ganguli, Deep ; Henighan, Tom ; Jones, Andy ; Nicholas, Joseph ; Mann, Ben ; DasSarma, Nova ; Nelson Elhage ; Hatfield-Dodds, Zac ; Hernandez, Danny ; Jackson Kernion ; Ndousse, Kamal ; Olsson, Catherine ; Amodei, Dario ; Brown, Tom ; Clark, Jack ; McCandlish, Sam ; Olah, Chris ; Kaplan, Jared</creator><creatorcontrib>Askell, Amanda ; Bai, Yuntao ; Chen, Anna ; Drain, Dawn ; Ganguli, Deep ; Henighan, Tom ; Jones, Andy ; Nicholas, Joseph ; Mann, Ben ; DasSarma, Nova ; Nelson Elhage ; Hatfield-Dodds, Zac ; Hernandez, Danny ; Jackson Kernion ; Ndousse, Kamal ; Olsson, Catherine ; Amodei, Dario ; Brown, Tom ; Clark, Jack ; McCandlish, Sam ; Olah, Chris ; Kaplan, Jared</creatorcontrib><description>Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Discrimination ; Learning ; Modelling ; Preferences ; Training</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2605773955?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Askell, Amanda</creatorcontrib><creatorcontrib>Bai, Yuntao</creatorcontrib><creatorcontrib>Chen, Anna</creatorcontrib><creatorcontrib>Drain, Dawn</creatorcontrib><creatorcontrib>Ganguli, Deep</creatorcontrib><creatorcontrib>Henighan, Tom</creatorcontrib><creatorcontrib>Jones, Andy</creatorcontrib><creatorcontrib>Nicholas, Joseph</creatorcontrib><creatorcontrib>Mann, Ben</creatorcontrib><creatorcontrib>DasSarma, Nova</creatorcontrib><creatorcontrib>Nelson Elhage</creatorcontrib><creatorcontrib>Hatfield-Dodds, Zac</creatorcontrib><creatorcontrib>Hernandez, Danny</creatorcontrib><creatorcontrib>Jackson Kernion</creatorcontrib><creatorcontrib>Ndousse, Kamal</creatorcontrib><creatorcontrib>Olsson, Catherine</creatorcontrib><creatorcontrib>Amodei, Dario</creatorcontrib><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Clark, Jack</creatorcontrib><creatorcontrib>McCandlish, Sam</creatorcontrib><creatorcontrib>Olah, Chris</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><title>A General Language Assistant as a Laboratory for Alignment</title><title>arXiv.org</title><description>Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.</description><subject>Alignment</subject><subject>Discrimination</subject><subject>Learning</subject><subject>Modelling</subject><subject>Preferences</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjb0KwjAURoMgWLTvcMG5EBPTqFsQfwZH93KFNLTERHOTwbe3gw_g9ME5B74Zq4SUm2a3FWLBaqKRcy5aLZSSFTsYuNhgE3q4YXAFnQVDNFDGkAEJcOKPmDDH9IE-JjB-cOFpQ16xeY-ebP3bJVufT_fjtXml-C6WcjfGksKkOtFypbXcT5f_VV9icDY4</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Askell, Amanda</creator><creator>Bai, Yuntao</creator><creator>Chen, Anna</creator><creator>Drain, Dawn</creator><creator>Ganguli, Deep</creator><creator>Henighan, Tom</creator><creator>Jones, Andy</creator><creator>Nicholas, Joseph</creator><creator>Mann, Ben</creator><creator>DasSarma, Nova</creator><creator>Nelson Elhage</creator><creator>Hatfield-Dodds, Zac</creator><creator>Hernandez, Danny</creator><creator>Jackson Kernion</creator><creator>Ndousse, Kamal</creator><creator>Olsson, Catherine</creator><creator>Amodei, Dario</creator><creator>Brown, Tom</creator><creator>Clark, Jack</creator><creator>McCandlish, Sam</creator><creator>Olah, Chris</creator><creator>Kaplan, Jared</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211209</creationdate><title>A General Language Assistant as a Laboratory for Alignment</title><author>Askell, Amanda ; Bai, Yuntao ; Chen, Anna ; Drain, Dawn ; Ganguli, Deep ; Henighan, Tom ; Jones, Andy ; Nicholas, Joseph ; Mann, Ben ; DasSarma, Nova ; Nelson Elhage ; Hatfield-Dodds, Zac ; Hernandez, Danny ; Jackson Kernion ; Ndousse, Kamal ; Olsson, Catherine ; Amodei, Dario ; Brown, Tom ; Clark, Jack ; McCandlish, Sam ; Olah, Chris ; Kaplan, Jared</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26057739553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alignment</topic><topic>Discrimination</topic><topic>Learning</topic><topic>Modelling</topic><topic>Preferences</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Askell, Amanda</creatorcontrib><creatorcontrib>Bai, Yuntao</creatorcontrib><creatorcontrib>Chen, Anna</creatorcontrib><creatorcontrib>Drain, Dawn</creatorcontrib><creatorcontrib>Ganguli, Deep</creatorcontrib><creatorcontrib>Henighan, Tom</creatorcontrib><creatorcontrib>Jones, Andy</creatorcontrib><creatorcontrib>Nicholas, Joseph</creatorcontrib><creatorcontrib>Mann, Ben</creatorcontrib><creatorcontrib>DasSarma, Nova</creatorcontrib><creatorcontrib>Nelson Elhage</creatorcontrib><creatorcontrib>Hatfield-Dodds, Zac</creatorcontrib><creatorcontrib>Hernandez, Danny</creatorcontrib><creatorcontrib>Jackson Kernion</creatorcontrib><creatorcontrib>Ndousse, Kamal</creatorcontrib><creatorcontrib>Olsson, Catherine</creatorcontrib><creatorcontrib>Amodei, Dario</creatorcontrib><creatorcontrib>Brown, Tom</creatorcontrib><creatorcontrib>Clark, Jack</creatorcontrib><creatorcontrib>McCandlish, Sam</creatorcontrib><creatorcontrib>Olah, Chris</creatorcontrib><creatorcontrib>Kaplan, Jared</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Askell, Amanda</au><au>Bai, Yuntao</au><au>Chen, Anna</au><au>Drain, Dawn</au><au>Ganguli, Deep</au><au>Henighan, Tom</au><au>Jones, Andy</au><au>Nicholas, Joseph</au><au>Mann, Ben</au><au>DasSarma, Nova</au><au>Nelson Elhage</au><au>Hatfield-Dodds, Zac</au><au>Hernandez, Danny</au><au>Jackson Kernion</au><au>Ndousse, Kamal</au><au>Olsson, Catherine</au><au>Amodei, Dario</au><au>Brown, Tom</au><au>Clark, Jack</au><au>McCandlish, Sam</au><au>Olah, Chris</au><au>Kaplan, Jared</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A General Language Assistant as a Laboratory for Alignment</atitle><jtitle>arXiv.org</jtitle><date>2021-12-09</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Given the broad capabilities of large language models, it should be possible to work towards a general-purpose, text-based assistant that is aligned with human values, meaning that it is helpful, honest, and harmless. As an initial foray in this direction we study simple baseline techniques and evaluations, such as prompting. We find that the benefits from modest interventions increase with model size, generalize to a variety of alignment evaluations, and do not compromise the performance of large models. Next we investigate scaling trends for several training objectives relevant to alignment, comparing imitation learning, binary discrimination, and ranked preference modeling. We find that ranked preference modeling performs much better than imitation learning, and often scales more favorably with model size. In contrast, binary discrimination typically performs and scales very similarly to imitation learning. Finally we study a `preference model pre-training' stage of training, with the goal of improving sample efficiency when finetuning on human preferences.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2605773955
source Publicly Available Content (ProQuest)
subjects Alignment
Discrimination
Learning
Modelling
Preferences
Training
title A General Language Assistant as a Laboratory for Alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A54%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20General%20Language%20Assistant%20as%20a%20Laboratory%20for%20Alignment&rft.jtitle=arXiv.org&rft.au=Askell,%20Amanda&rft.date=2021-12-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2605773955%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26057739553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2605773955&rft_id=info:pmid/&rfr_iscdi=true