Loading…

Sentence Classification Using N-Grams in Urdu Language Text

The usage of local languages is being common in social media and news channels. The people share the worthy insights about various topics related to their lives in different languages. A bulk of text in various local languages exists on the Internet that contains invaluable information. The analysis...

Full description

Saved in:
Bibliographic Details
Published in:Scientific programming 2021-11, Vol.2021, p.1-11
Main Authors: Ali Awan, Malik Daler, Ali, Sikandar, Samad, Ali, Iqbal, Nadeem, Saad Missen, Malik Muhammad, Ullah, Niamat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The usage of local languages is being common in social media and news channels. The people share the worthy insights about various topics related to their lives in different languages. A bulk of text in various local languages exists on the Internet that contains invaluable information. The analysis of such type of stuff (local language’s text) will certainly help improve a number of Natural Language Processing (NLP) tasks. The information extracted from local languages can be used to develop various applications to add new milestone in the field of NLP. In this paper, we presented an applied research task, “multiclass sentence classification for Urdu language text at sentence level existing on the social networks, i.e., Twitter, Facebook, and news channels by using N-grams features.” Our dataset consists of more than 1,00000 instances of twelve (12) different types of topics. A famous machine learning classifier Random Forest is used to classify the sentences. It showed 80.15%, 76.88%, and 64.41% accuracy for unigram, bigram, and trigram features, respectively.
ISSN:1058-9244
1875-919X
DOI:10.1155/2021/1296076