Loading…
An alternative difference scheme for solving problems of deformation of geomaterials with internal structure
For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2448 |
creator | Revuzhenko, A. F. Lavrikov, S. V. Mikenina, O. A. |
description | For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed. |
doi_str_mv | 10.1063/5.0073263 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2607047891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607047891</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2033-5172f65155bcdcdecbbfac9024bc610d07c675ba5fe3b460d642d2d402f177263</originalsourceid><addsrcrecordid>eNp9UEtLAzEYDKJgrR78BwFvwtYv2U3SPZbiCwpeFLyF3TzalN3NmuxW_PemD_Dm6WOY-YaZQeiWwIwAzx_YDEDklOdnaEIYI5nghJ-jCUBZZLTIPy_RVYxbAFoKMZ-gZtHhqhlM6KrB7QzWzloTTKcMjmpjWoOtDzj6Zue6Ne6DrxvTRuwt1iYxbfry3R6ujU_ABFc1EX-7YYNdd7BtcBzCqIYxmGt0YRNtbk53ij6eHt-XL9nq7fl1uVhlPYU8zxgR1HKW4tdKK21UXdtKlUCLWnECGoTigtUVsyavCw6aF1RTXQC1RIjUfYrujr4p79do4iC3ftxHiZJyEFCIeUmS6v6oisoNhx6yD66two8kIPdrSiZPa_4n3vnwJ5S9tvkvtqJ3lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2607047891</pqid></control><display><type>conference_proceeding</type><title>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Revuzhenko, A. F. ; Lavrikov, S. V. ; Mikenina, O. A.</creator><contributor>Fomin, Vasily ; Buzyurkin, Andrey</contributor><creatorcontrib>Revuzhenko, A. F. ; Lavrikov, S. V. ; Mikenina, O. A. ; Fomin, Vasily ; Buzyurkin, Andrey</creatorcontrib><description>For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0073263</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deformation ; Difference equations ; Dilatancy ; Elasticity ; Geomaterials ; Internal friction ; Mathematical analysis ; Nonuniformity ; Problem solving ; Sliding ; Structural members</subject><ispartof>AIP conference proceedings, 2021, Vol.2448 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Fomin, Vasily</contributor><contributor>Buzyurkin, Andrey</contributor><creatorcontrib>Revuzhenko, A. F.</creatorcontrib><creatorcontrib>Lavrikov, S. V.</creatorcontrib><creatorcontrib>Mikenina, O. A.</creatorcontrib><title>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</title><title>AIP conference proceedings</title><description>For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.</description><subject>Deformation</subject><subject>Difference equations</subject><subject>Dilatancy</subject><subject>Elasticity</subject><subject>Geomaterials</subject><subject>Internal friction</subject><subject>Mathematical analysis</subject><subject>Nonuniformity</subject><subject>Problem solving</subject><subject>Sliding</subject><subject>Structural members</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9UEtLAzEYDKJgrR78BwFvwtYv2U3SPZbiCwpeFLyF3TzalN3NmuxW_PemD_Dm6WOY-YaZQeiWwIwAzx_YDEDklOdnaEIYI5nghJ-jCUBZZLTIPy_RVYxbAFoKMZ-gZtHhqhlM6KrB7QzWzloTTKcMjmpjWoOtDzj6Zue6Ne6DrxvTRuwt1iYxbfry3R6ujU_ABFc1EX-7YYNdd7BtcBzCqIYxmGt0YRNtbk53ij6eHt-XL9nq7fl1uVhlPYU8zxgR1HKW4tdKK21UXdtKlUCLWnECGoTigtUVsyavCw6aF1RTXQC1RIjUfYrujr4p79do4iC3ftxHiZJyEFCIeUmS6v6oisoNhx6yD66two8kIPdrSiZPa_4n3vnwJ5S9tvkvtqJ3lA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Revuzhenko, A. F.</creator><creator>Lavrikov, S. V.</creator><creator>Mikenina, O. A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211206</creationdate><title>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</title><author>Revuzhenko, A. F. ; Lavrikov, S. V. ; Mikenina, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2033-5172f65155bcdcdecbbfac9024bc610d07c675ba5fe3b460d642d2d402f177263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deformation</topic><topic>Difference equations</topic><topic>Dilatancy</topic><topic>Elasticity</topic><topic>Geomaterials</topic><topic>Internal friction</topic><topic>Mathematical analysis</topic><topic>Nonuniformity</topic><topic>Problem solving</topic><topic>Sliding</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revuzhenko, A. F.</creatorcontrib><creatorcontrib>Lavrikov, S. V.</creatorcontrib><creatorcontrib>Mikenina, O. A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revuzhenko, A. F.</au><au>Lavrikov, S. V.</au><au>Mikenina, O. A.</au><au>Fomin, Vasily</au><au>Buzyurkin, Andrey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</atitle><btitle>AIP conference proceedings</btitle><date>2021-12-06</date><risdate>2021</risdate><volume>2448</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073263</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2021, Vol.2448 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2607047891 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Deformation Difference equations Dilatancy Elasticity Geomaterials Internal friction Mathematical analysis Nonuniformity Problem solving Sliding Structural members |
title | An alternative difference scheme for solving problems of deformation of geomaterials with internal structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20alternative%20difference%20scheme%20for%20solving%20problems%20of%20deformation%20of%20geomaterials%20with%20internal%20structure&rft.btitle=AIP%20conference%20proceedings&rft.au=Revuzhenko,%20A.%20F.&rft.date=2021-12-06&rft.volume=2448&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0073263&rft_dat=%3Cproquest_scita%3E2607047891%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2033-5172f65155bcdcdecbbfac9024bc610d07c675ba5fe3b460d642d2d402f177263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607047891&rft_id=info:pmid/&rfr_iscdi=true |