Loading…

An alternative difference scheme for solving problems of deformation of geomaterials with internal structure

For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equa...

Full description

Saved in:
Bibliographic Details
Main Authors: Revuzhenko, A. F., Lavrikov, S. V., Mikenina, O. A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2448
creator Revuzhenko, A. F.
Lavrikov, S. V.
Mikenina, O. A.
description For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.
doi_str_mv 10.1063/5.0073263
format conference_proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2607047891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607047891</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2033-5172f65155bcdcdecbbfac9024bc610d07c675ba5fe3b460d642d2d402f177263</originalsourceid><addsrcrecordid>eNp9UEtLAzEYDKJgrR78BwFvwtYv2U3SPZbiCwpeFLyF3TzalN3NmuxW_PemD_Dm6WOY-YaZQeiWwIwAzx_YDEDklOdnaEIYI5nghJ-jCUBZZLTIPy_RVYxbAFoKMZ-gZtHhqhlM6KrB7QzWzloTTKcMjmpjWoOtDzj6Zue6Ne6DrxvTRuwt1iYxbfry3R6ujU_ABFc1EX-7YYNdd7BtcBzCqIYxmGt0YRNtbk53ij6eHt-XL9nq7fl1uVhlPYU8zxgR1HKW4tdKK21UXdtKlUCLWnECGoTigtUVsyavCw6aF1RTXQC1RIjUfYrujr4p79do4iC3ftxHiZJyEFCIeUmS6v6oisoNhx6yD66two8kIPdrSiZPa_4n3vnwJ5S9tvkvtqJ3lA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2607047891</pqid></control><display><type>conference_proceeding</type><title>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Revuzhenko, A. F. ; Lavrikov, S. V. ; Mikenina, O. A.</creator><contributor>Fomin, Vasily ; Buzyurkin, Andrey</contributor><creatorcontrib>Revuzhenko, A. F. ; Lavrikov, S. V. ; Mikenina, O. A. ; Fomin, Vasily ; Buzyurkin, Andrey</creatorcontrib><description>For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0073263</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Deformation ; Difference equations ; Dilatancy ; Elasticity ; Geomaterials ; Internal friction ; Mathematical analysis ; Nonuniformity ; Problem solving ; Sliding ; Structural members</subject><ispartof>AIP conference proceedings, 2021, Vol.2448 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids></links><search><contributor>Fomin, Vasily</contributor><contributor>Buzyurkin, Andrey</contributor><creatorcontrib>Revuzhenko, A. F.</creatorcontrib><creatorcontrib>Lavrikov, S. V.</creatorcontrib><creatorcontrib>Mikenina, O. A.</creatorcontrib><title>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</title><title>AIP conference proceedings</title><description>For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.</description><subject>Deformation</subject><subject>Difference equations</subject><subject>Dilatancy</subject><subject>Elasticity</subject><subject>Geomaterials</subject><subject>Internal friction</subject><subject>Mathematical analysis</subject><subject>Nonuniformity</subject><subject>Problem solving</subject><subject>Sliding</subject><subject>Structural members</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9UEtLAzEYDKJgrR78BwFvwtYv2U3SPZbiCwpeFLyF3TzalN3NmuxW_PemD_Dm6WOY-YaZQeiWwIwAzx_YDEDklOdnaEIYI5nghJ-jCUBZZLTIPy_RVYxbAFoKMZ-gZtHhqhlM6KrB7QzWzloTTKcMjmpjWoOtDzj6Zue6Ne6DrxvTRuwt1iYxbfry3R6ujU_ABFc1EX-7YYNdd7BtcBzCqIYxmGt0YRNtbk53ij6eHt-XL9nq7fl1uVhlPYU8zxgR1HKW4tdKK21UXdtKlUCLWnECGoTigtUVsyavCw6aF1RTXQC1RIjUfYrujr4p79do4iC3ftxHiZJyEFCIeUmS6v6oisoNhx6yD66two8kIPdrSiZPa_4n3vnwJ5S9tvkvtqJ3lA</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Revuzhenko, A. F.</creator><creator>Lavrikov, S. V.</creator><creator>Mikenina, O. A.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20211206</creationdate><title>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</title><author>Revuzhenko, A. F. ; Lavrikov, S. V. ; Mikenina, O. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2033-5172f65155bcdcdecbbfac9024bc610d07c675ba5fe3b460d642d2d402f177263</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deformation</topic><topic>Difference equations</topic><topic>Dilatancy</topic><topic>Elasticity</topic><topic>Geomaterials</topic><topic>Internal friction</topic><topic>Mathematical analysis</topic><topic>Nonuniformity</topic><topic>Problem solving</topic><topic>Sliding</topic><topic>Structural members</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Revuzhenko, A. F.</creatorcontrib><creatorcontrib>Lavrikov, S. V.</creatorcontrib><creatorcontrib>Mikenina, O. A.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Revuzhenko, A. F.</au><au>Lavrikov, S. V.</au><au>Mikenina, O. A.</au><au>Fomin, Vasily</au><au>Buzyurkin, Andrey</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An alternative difference scheme for solving problems of deformation of geomaterials with internal structure</atitle><btitle>AIP conference proceedings</btitle><date>2021-12-06</date><risdate>2021</risdate><volume>2448</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>For solving plane problems, two nested difference grids are introduced. In each grid, a field of displacements and individual stresses are set. The difference of the displacement fields allows describing nonuniformity (non-affinity) of strains in structural elements of the medium. The governing equations are divided into two groups. The first group describes deformation of structural elements, and the second group describes internal friction, dilatancy and sliding between the elements. In the limiting case when sliding is absent and the size of the structural element tends to zero, the equations transform to classical equations of linear elasticity. The difference equations of the two nested grids represent an alternative to the equations constructed for a single difference grid approximating elasticity equations. Examples of solutions to boundary problems are discussed.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073263</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2021, Vol.2448 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2607047891
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects Deformation
Difference equations
Dilatancy
Elasticity
Geomaterials
Internal friction
Mathematical analysis
Nonuniformity
Problem solving
Sliding
Structural members
title An alternative difference scheme for solving problems of deformation of geomaterials with internal structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20alternative%20difference%20scheme%20for%20solving%20problems%20of%20deformation%20of%20geomaterials%20with%20internal%20structure&rft.btitle=AIP%20conference%20proceedings&rft.au=Revuzhenko,%20A.%20F.&rft.date=2021-12-06&rft.volume=2448&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0073263&rft_dat=%3Cproquest_scita%3E2607047891%3C/proquest_scita%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p2033-5172f65155bcdcdecbbfac9024bc610d07c675ba5fe3b460d642d2d402f177263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607047891&rft_id=info:pmid/&rfr_iscdi=true