Loading…
Linear algebra with transformers
Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers train...
Saved in:
Published in: | arXiv.org 2022-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Charton, François |
description | Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2607083489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607083489</sourcerecordid><originalsourceid>FETCH-proquest_journals_26070834893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8MnMS00sUkjMSU9NKkpUKM8syVAoKUrMK07LL8pNLSrmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMDcwMLYxMLS2PiVAEAEbstbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607083489</pqid></control><display><type>article</type><title>Linear algebra with transformers</title><source>Publicly Available Content (ProQuest)</source><creator>Charton, François</creator><creatorcontrib>Charton, François</creatorcontrib><description>Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Datasets ; Eigenvalues ; Linear algebra ; Matrices (mathematics) ; Matrix algebra ; Multiplication ; Singular value decomposition ; Training ; Transformers ; Vectors (mathematics)</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2607083489?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,37010,44588</link.rule.ids></links><search><creatorcontrib>Charton, François</creatorcontrib><title>Linear algebra with transformers</title><title>arXiv.org</title><description>Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true.</description><subject>Accuracy</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Linear algebra</subject><subject>Matrices (mathematics)</subject><subject>Matrix algebra</subject><subject>Multiplication</subject><subject>Singular value decomposition</subject><subject>Training</subject><subject>Transformers</subject><subject>Vectors (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8MnMS00sUkjMSU9NKkpUKM8syVAoKUrMK07LL8pNLSrmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IzMDcwMLYxMLS2PiVAEAEbstbg</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Charton, François</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221108</creationdate><title>Linear algebra with transformers</title><author>Charton, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26070834893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Linear algebra</topic><topic>Matrices (mathematics)</topic><topic>Matrix algebra</topic><topic>Multiplication</topic><topic>Singular value decomposition</topic><topic>Training</topic><topic>Transformers</topic><topic>Vectors (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Charton, François</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charton, François</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Linear algebra with transformers</atitle><jtitle>arXiv.org</jtitle><date>2022-11-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Transformers can learn to perform numerical computations from examples only. I study nine problems of linear algebra, from basic matrix operations to eigenvalue decomposition and inversion, and introduce and discuss four encoding schemes to represent real numbers. On all problems, transformers trained on sets of random matrices achieve high accuracies (over 90%). The models are robust to noise, and can generalize out of their training distribution. In particular, models trained to predict Laplace-distributed eigenvalues generalize to different classes of matrices: Wigner matrices or matrices with positive eigenvalues. The reverse is not true.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2607083489 |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Datasets Eigenvalues Linear algebra Matrices (mathematics) Matrix algebra Multiplication Singular value decomposition Training Transformers Vectors (mathematics) |
title | Linear algebra with transformers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Linear%20algebra%20with%20transformers&rft.jtitle=arXiv.org&rft.au=Charton,%20Fran%C3%A7ois&rft.date=2022-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2607083489%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26070834893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607083489&rft_id=info:pmid/&rfr_iscdi=true |