Loading…
Hydrogen Removal in Circulating Vacuum Degasser under Conditions of PJSC “NLMK”
For high-quality steel smelting, stagebystage production is required, which has a complex of metallurgical units capable for producing products with high performance properties and low content of harmful impurities. One of the harmful impurities is hydrogen, so it is important to limit its content i...
Saved in:
Published in: | Steel in translation 2021-08, Vol.51 (8), p.491-495 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For high-quality steel smelting, stagebystage production is required, which has a complex of metallurgical units capable for producing products with high performance properties and low content of harmful impurities. One of the harmful impurities is hydrogen, so it is important to limit its content in the metal. To ensure the specified hydrogen content, the metal in the steel outoffurnace treatment at Converter Shop No. 2 (CS2) of PJSC “Novolipetsk Metallurgical Plant” (“NLMK”) is subjected to vacuum treatment in a circulating vacuum degasser. Despite the prevalence of circulating vacuum degassers, theoretically, mechanism of hydrogen removal in these metallurgical units has been insufficiently studied. To increase efficiency of hydrogen removal, theoretical calculations were performed to remove it from the metal. There are several mechanisms for hydrogen removing: direct transfer of hydrogen from metal to the surrounding space; formation of gas bubbles in metal and their direct ascent; nucleation of hydrogen bubbles at the border of refractory wall and metal; and removal of hydrogen by metal blowing with neutral gas (argon). It is shown that the main ways of hydrogen removal in a circulating vacuum degasser are direct transfer of hydrogen from metal to the surrounding space and blowing of melt with transporting gas. In the CS2 of PJSC “NLMK”, both ways are implemented at a circulating vacuum degasser. Vacuum pumps provide pressure in a vacuum chamber of less than 101.3 Pa (0.001 atm). It promotes intensive removal of hydrogen from the metal surface. To ensure circulation of metal, transporting gas argon is supplied to the inlet pipe of the RH degasser, which also takes part in removal of dissolved gases by transferring hydrogen to neutral gas bubbles. Additionally, performed calculations have shown that the main way of degassing in conditions of CS2 of PJSC “NLMK” is removal of hydrogen into the bubbles of carrier gas. |
---|---|
ISSN: | 0967-0912 1935-0988 |
DOI: | 10.3103/S096709122108012X |