Loading…

Identifying QCD Phase Transitions via the Gravitational Wave Frequency from a Supernova Explosion

We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT ba...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-12, Vol.922 (2), p.266
Main Authors: Bai, Zhan, Fu, Wei-jie, Liu, Yu-xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3
cites cdi_FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3
container_end_page
container_issue 2
container_start_page 266
container_title The Astrophysical journal
container_volume 922
creator Bai, Zhan
Fu, Wei-jie
Liu, Yu-xin
description We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT bag model and the Nambu–Jona-Lasinio model adopted to construct the configurations of the SQSs. We find that the gravitational-mode ( g -mode) eigenfrequencies of newly born SQSs are significantly lower than those of NSs, which is independent of models implemented to describe the EoS for the strange quark matter. Meanwhile, the eigenfrequencies of the other modes of nonradial oscillations, e.g., fundamental ( f )- and pressure ( p )-modes, are much larger than those of the g -mode, and are related to the stiffness of the EoSs. In light of the first direct observation of gravitational waves (GWs), it is promising to employ GWs to identify the QCD phase transition in high-density strong-interaction matter.
doi_str_mv 10.3847/1538-4357/ac2a31
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607339347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607339347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGv1iV9adMcZbo5GKg40Vt5y1KXsTU16Yr7722p6MnT4733fR8fP0IuObuBTMgRTyCLBCRyhDpG4Edk8Hs6JgPGmIhSkO-n5CyETbfGSg0IzlamrG1xsOUHfR7f0ac1BkMXHstga-vKQBuLtF4bOvXY2Bq7I27pGzaGTrz53JtSH2jh3Y4ifdlXxpeuQXr_VW1daLXn5KTAbTAXP3NIXif3i_FDNH-czsa380hDwuooUUujpWICkTPgUghhMp0msCowzmQaKy5TUO2XCxkDaiXSDHDJRcE0NwhDctXnVt61pUKdb9zet1VDHqdMAigQslWxXqW9C8GbIq-83aE_5JzlHci8o5Z31PIeZGu57i3WVX-Z_8q_AWdZc90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607339347</pqid></control><display><type>article</type><title>Identifying QCD Phase Transitions via the Gravitational Wave Frequency from a Supernova Explosion</title><source>EZB Free E-Journals</source><creator>Bai, Zhan ; Fu, Wei-jie ; Liu, Yu-xin</creator><creatorcontrib>Bai, Zhan ; Fu, Wei-jie ; Liu, Yu-xin</creatorcontrib><description>We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT bag model and the Nambu–Jona-Lasinio model adopted to construct the configurations of the SQSs. We find that the gravitational-mode ( g -mode) eigenfrequencies of newly born SQSs are significantly lower than those of NSs, which is independent of models implemented to describe the EoS for the strange quark matter. Meanwhile, the eigenfrequencies of the other modes of nonradial oscillations, e.g., fundamental ( f )- and pressure ( p )-modes, are much larger than those of the g -mode, and are related to the stiffness of the EoSs. In light of the first direct observation of gravitational waves (GWs), it is promising to employ GWs to identify the QCD phase transition in high-density strong-interaction matter.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac2a31</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Compact objects ; Equations of state ; Field theory ; Gravitational waves ; Neutron stars ; Oscillations ; Phase transitions ; Quantum chromodynamics ; Quark stars ; Quarks ; Relativistic theory ; Resonant frequencies ; Stellar oscillations ; Stiffness ; Supernova</subject><ispartof>The Astrophysical journal, 2021-12, Vol.922 (2), p.266</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3</citedby><cites>FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3</cites><orcidid>0000-0001-5944-0244 ; 0000-0002-5647-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bai, Zhan</creatorcontrib><creatorcontrib>Fu, Wei-jie</creatorcontrib><creatorcontrib>Liu, Yu-xin</creatorcontrib><title>Identifying QCD Phase Transitions via the Gravitational Wave Frequency from a Supernova Explosion</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT bag model and the Nambu–Jona-Lasinio model adopted to construct the configurations of the SQSs. We find that the gravitational-mode ( g -mode) eigenfrequencies of newly born SQSs are significantly lower than those of NSs, which is independent of models implemented to describe the EoS for the strange quark matter. Meanwhile, the eigenfrequencies of the other modes of nonradial oscillations, e.g., fundamental ( f )- and pressure ( p )-modes, are much larger than those of the g -mode, and are related to the stiffness of the EoSs. In light of the first direct observation of gravitational waves (GWs), it is promising to employ GWs to identify the QCD phase transition in high-density strong-interaction matter.</description><subject>Astrophysics</subject><subject>Compact objects</subject><subject>Equations of state</subject><subject>Field theory</subject><subject>Gravitational waves</subject><subject>Neutron stars</subject><subject>Oscillations</subject><subject>Phase transitions</subject><subject>Quantum chromodynamics</subject><subject>Quark stars</subject><subject>Quarks</subject><subject>Relativistic theory</subject><subject>Resonant frequencies</subject><subject>Stellar oscillations</subject><subject>Stiffness</subject><subject>Supernova</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGv1iV9adMcZbo5GKg40Vt5y1KXsTU16Yr7722p6MnT4733fR8fP0IuObuBTMgRTyCLBCRyhDpG4Edk8Hs6JgPGmIhSkO-n5CyETbfGSg0IzlamrG1xsOUHfR7f0ac1BkMXHstga-vKQBuLtF4bOvXY2Bq7I27pGzaGTrz53JtSH2jh3Y4ifdlXxpeuQXr_VW1daLXn5KTAbTAXP3NIXif3i_FDNH-czsa380hDwuooUUujpWICkTPgUghhMp0msCowzmQaKy5TUO2XCxkDaiXSDHDJRcE0NwhDctXnVt61pUKdb9zet1VDHqdMAigQslWxXqW9C8GbIq-83aE_5JzlHci8o5Z31PIeZGu57i3WVX-Z_8q_AWdZc90</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bai, Zhan</creator><creator>Fu, Wei-jie</creator><creator>Liu, Yu-xin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5944-0244</orcidid><orcidid>https://orcid.org/0000-0002-5647-5246</orcidid></search><sort><creationdate>20211201</creationdate><title>Identifying QCD Phase Transitions via the Gravitational Wave Frequency from a Supernova Explosion</title><author>Bai, Zhan ; Fu, Wei-jie ; Liu, Yu-xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Compact objects</topic><topic>Equations of state</topic><topic>Field theory</topic><topic>Gravitational waves</topic><topic>Neutron stars</topic><topic>Oscillations</topic><topic>Phase transitions</topic><topic>Quantum chromodynamics</topic><topic>Quark stars</topic><topic>Quarks</topic><topic>Relativistic theory</topic><topic>Resonant frequencies</topic><topic>Stellar oscillations</topic><topic>Stiffness</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Zhan</creatorcontrib><creatorcontrib>Fu, Wei-jie</creatorcontrib><creatorcontrib>Liu, Yu-xin</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Zhan</au><au>Fu, Wei-jie</au><au>Liu, Yu-xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying QCD Phase Transitions via the Gravitational Wave Frequency from a Supernova Explosion</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>922</volume><issue>2</issue><spage>266</spage><pages>266-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We investigate the nonradial oscillations of newly born neutron stars (NSs) and strange quark stars (SQSs). This is done with the relativistic nuclear field theory with hyperon degrees of freedom employed to describe the equation of state (EoS) for the stellar matter in NSs, and with both the MIT bag model and the Nambu–Jona-Lasinio model adopted to construct the configurations of the SQSs. We find that the gravitational-mode ( g -mode) eigenfrequencies of newly born SQSs are significantly lower than those of NSs, which is independent of models implemented to describe the EoS for the strange quark matter. Meanwhile, the eigenfrequencies of the other modes of nonradial oscillations, e.g., fundamental ( f )- and pressure ( p )-modes, are much larger than those of the g -mode, and are related to the stiffness of the EoSs. In light of the first direct observation of gravitational waves (GWs), it is promising to employ GWs to identify the QCD phase transition in high-density strong-interaction matter.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac2a31</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-5944-0244</orcidid><orcidid>https://orcid.org/0000-0002-5647-5246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-12, Vol.922 (2), p.266
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2607339347
source EZB Free E-Journals
subjects Astrophysics
Compact objects
Equations of state
Field theory
Gravitational waves
Neutron stars
Oscillations
Phase transitions
Quantum chromodynamics
Quark stars
Quarks
Relativistic theory
Resonant frequencies
Stellar oscillations
Stiffness
Supernova
title Identifying QCD Phase Transitions via the Gravitational Wave Frequency from a Supernova Explosion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20QCD%20Phase%20Transitions%20via%20the%20Gravitational%20Wave%20Frequency%20from%20a%20Supernova%20Explosion&rft.jtitle=The%20Astrophysical%20journal&rft.au=Bai,%20Zhan&rft.date=2021-12-01&rft.volume=922&rft.issue=2&rft.spage=266&rft.pages=266-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac2a31&rft_dat=%3Cproquest_cross%3E2607339347%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-59bec7904aa10317444e8c653dfa28762917639aa114723ac94683ab14f0c1ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607339347&rft_id=info:pmid/&rfr_iscdi=true