Loading…

PointCLIP: Point Cloud Understanding by CLIP

Recently, zero-shot and few-shot learning via Contrastive Vision-Language Pre-training (CLIP) have shown inspirational performance on 2D visual recognition, which learns to match images with their corresponding texts in open-vocabulary settings. However, it remains under explored that whether CLIP,...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-12
Main Authors: Zhang, Renrui, Guo, Ziyu, Zhang, Wei, Li, Kunchang, Miao, Xupeng, Cui, Bin, Yu, Qiao, Gao, Peng, Li, Hongsheng
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, zero-shot and few-shot learning via Contrastive Vision-Language Pre-training (CLIP) have shown inspirational performance on 2D visual recognition, which learns to match images with their corresponding texts in open-vocabulary settings. However, it remains under explored that whether CLIP, pre-trained by large-scale image-text pairs in 2D, can be generalized to 3D recognition. In this paper, we identify such a setting is feasible by proposing PointCLIP, which conducts alignment between CLIP-encoded point cloud and 3D category texts. Specifically, we encode a point cloud by projecting it into multi-view depth maps without rendering, and aggregate the view-wise zero-shot prediction to achieve knowledge transfer from 2D to 3D. On top of that, we design an inter-view adapter to better extract the global feature and adaptively fuse the few-shot knowledge learned from 3D into CLIP pre-trained in 2D. By just fine-tuning the lightweight adapter in the few-shot settings, the performance of PointCLIP could be largely improved. In addition, we observe the complementary property between PointCLIP and classical 3D-supervised networks. By simple ensembling, PointCLIP boosts baseline's performance and even surpasses state-of-the-art models. Therefore, PointCLIP is a promising alternative for effective 3D point cloud understanding via CLIP under low resource cost and data regime. We conduct thorough experiments on widely-adopted ModelNet10, ModelNet40 and the challenging ScanObjectNN to demonstrate the effectiveness of PointCLIP. The code is released at https://github.com/ZrrSkywalker/PointCLIP.
ISSN:2331-8422