Loading…

Measure-valued loads for a hyperelastic model of soft tissues

We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers dur...

Full description

Saved in:
Bibliographic Details
Published in:International journal of non-linear mechanics 2021-12, Vol.137, p.103826, Article 103826
Main Authors: Marzocchi, Alfredo, Musesti, Alessandro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13
cites cdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13
container_end_page
container_issue
container_start_page 103826
container_title International journal of non-linear mechanics
container_volume 137
creator Marzocchi, Alfredo
Musesti, Alessandro
description We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions. •A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.
doi_str_mv 10.1016/j.ijnonlinmec.2021.103826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607708906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746221001608</els_id><sourcerecordid>2607708906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</originalsourceid><addsrcrecordid>eNqNUEtLxDAQDqLguvofIp67TtKYpAcPsviCFS96DjGZYkq3WZN2wX9vlnrwKAwzw_A9mI-QSwYrBkxed6vQDXHow7BFt-LAWbnXmssjsmBa6epG1vqYLAA4VEpIfkrOcu6gcAWoBbl9QZunhNXe9hN62kfrM21jopZ-fu8wYW_zGBzdRo89jS3NsR3pGHKeMJ-Tk9b2GS9-55K8P9y_rZ-qzevj8_puU7laNGMlGmcBhCz-QkknAXXtfdmcFqw0yzlvLX6oWinZcKk1t61nDgqRlaqX5GrW3aX4VXxH08UpDcXScAlKgW5AFlQzo1yKOSdszS6FrU3fhoE5pGU68yctc0jLzGkV7nrmYnljHzCZ7AIODn1I6EbjY_iHyg9-vHgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607708906</pqid></control><display><type>article</type><title>Measure-valued loads for a hyperelastic model of soft tissues</title><source>Elsevier</source><source>ScienceDirect: Physics General Backfile</source><creator>Marzocchi, Alfredo ; Musesti, Alessandro</creator><creatorcontrib>Marzocchi, Alfredo ; Musesti, Alessandro</creatorcontrib><description>We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions. •A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2021.103826</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Boundary conditions ; Calculus of variations ; Constitutive relationships ; Elastic deformation ; Euler-Lagrange equation ; Flux density ; Nonlinear elasticity ; Soft tissues ; Variational inequalities</subject><ispartof>International journal of non-linear mechanics, 2021-12, Vol.137, p.103826, Article 103826</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</citedby><cites>FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746221001608$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3630,27922,27923,46010</link.rule.ids></links><search><creatorcontrib>Marzocchi, Alfredo</creatorcontrib><creatorcontrib>Musesti, Alessandro</creatorcontrib><title>Measure-valued loads for a hyperelastic model of soft tissues</title><title>International journal of non-linear mechanics</title><description>We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions. •A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.</description><subject>Boundary conditions</subject><subject>Calculus of variations</subject><subject>Constitutive relationships</subject><subject>Elastic deformation</subject><subject>Euler-Lagrange equation</subject><subject>Flux density</subject><subject>Nonlinear elasticity</subject><subject>Soft tissues</subject><subject>Variational inequalities</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLxDAQDqLguvofIp67TtKYpAcPsviCFS96DjGZYkq3WZN2wX9vlnrwKAwzw_A9mI-QSwYrBkxed6vQDXHow7BFt-LAWbnXmssjsmBa6epG1vqYLAA4VEpIfkrOcu6gcAWoBbl9QZunhNXe9hN62kfrM21jopZ-fu8wYW_zGBzdRo89jS3NsR3pGHKeMJ-Tk9b2GS9-55K8P9y_rZ-qzevj8_puU7laNGMlGmcBhCz-QkknAXXtfdmcFqw0yzlvLX6oWinZcKk1t61nDgqRlaqX5GrW3aX4VXxH08UpDcXScAlKgW5AFlQzo1yKOSdszS6FrU3fhoE5pGU68yctc0jLzGkV7nrmYnljHzCZ7AIODn1I6EbjY_iHyg9-vHgc</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Marzocchi, Alfredo</creator><creator>Musesti, Alessandro</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202112</creationdate><title>Measure-valued loads for a hyperelastic model of soft tissues</title><author>Marzocchi, Alfredo ; Musesti, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Calculus of variations</topic><topic>Constitutive relationships</topic><topic>Elastic deformation</topic><topic>Euler-Lagrange equation</topic><topic>Flux density</topic><topic>Nonlinear elasticity</topic><topic>Soft tissues</topic><topic>Variational inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzocchi, Alfredo</creatorcontrib><creatorcontrib>Musesti, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzocchi, Alfredo</au><au>Musesti, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measure-valued loads for a hyperelastic model of soft tissues</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2021-12</date><risdate>2021</risdate><volume>137</volume><spage>103826</spage><pages>103826-</pages><artnum>103826</artnum><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions. •A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2021.103826</doi></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2021-12, Vol.137, p.103826, Article 103826
issn 0020-7462
1878-5638
language eng
recordid cdi_proquest_journals_2607708906
source Elsevier; ScienceDirect: Physics General Backfile
subjects Boundary conditions
Calculus of variations
Constitutive relationships
Elastic deformation
Euler-Lagrange equation
Flux density
Nonlinear elasticity
Soft tissues
Variational inequalities
title Measure-valued loads for a hyperelastic model of soft tissues
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measure-valued%20loads%20for%20a%20hyperelastic%20model%20of%20soft%20tissues&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Marzocchi,%20Alfredo&rft.date=2021-12&rft.volume=137&rft.spage=103826&rft.pages=103826-&rft.artnum=103826&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2021.103826&rft_dat=%3Cproquest_cross%3E2607708906%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607708906&rft_id=info:pmid/&rfr_iscdi=true