Loading…
Measure-valued loads for a hyperelastic model of soft tissues
We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers dur...
Saved in:
Published in: | International journal of non-linear mechanics 2021-12, Vol.137, p.103826, Article 103826 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13 |
container_end_page | |
container_issue | |
container_start_page | 103826 |
container_title | International journal of non-linear mechanics |
container_volume | 137 |
creator | Marzocchi, Alfredo Musesti, Alessandro |
description | We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions.
•A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved. |
doi_str_mv | 10.1016/j.ijnonlinmec.2021.103826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607708906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020746221001608</els_id><sourcerecordid>2607708906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</originalsourceid><addsrcrecordid>eNqNUEtLxDAQDqLguvofIp67TtKYpAcPsviCFS96DjGZYkq3WZN2wX9vlnrwKAwzw_A9mI-QSwYrBkxed6vQDXHow7BFt-LAWbnXmssjsmBa6epG1vqYLAA4VEpIfkrOcu6gcAWoBbl9QZunhNXe9hN62kfrM21jopZ-fu8wYW_zGBzdRo89jS3NsR3pGHKeMJ-Tk9b2GS9-55K8P9y_rZ-qzevj8_puU7laNGMlGmcBhCz-QkknAXXtfdmcFqw0yzlvLX6oWinZcKk1t61nDgqRlaqX5GrW3aX4VXxH08UpDcXScAlKgW5AFlQzo1yKOSdszS6FrU3fhoE5pGU68yctc0jLzGkV7nrmYnljHzCZ7AIODn1I6EbjY_iHyg9-vHgc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607708906</pqid></control><display><type>article</type><title>Measure-valued loads for a hyperelastic model of soft tissues</title><source>Elsevier</source><source>ScienceDirect: Physics General Backfile</source><creator>Marzocchi, Alfredo ; Musesti, Alessandro</creator><creatorcontrib>Marzocchi, Alfredo ; Musesti, Alessandro</creatorcontrib><description>We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions.
•A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.</description><identifier>ISSN: 0020-7462</identifier><identifier>EISSN: 1878-5638</identifier><identifier>DOI: 10.1016/j.ijnonlinmec.2021.103826</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Boundary conditions ; Calculus of variations ; Constitutive relationships ; Elastic deformation ; Euler-Lagrange equation ; Flux density ; Nonlinear elasticity ; Soft tissues ; Variational inequalities</subject><ispartof>International journal of non-linear mechanics, 2021-12, Vol.137, p.103826, Article 103826</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</citedby><cites>FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020746221001608$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3630,27922,27923,46010</link.rule.ids></links><search><creatorcontrib>Marzocchi, Alfredo</creatorcontrib><creatorcontrib>Musesti, Alessandro</creatorcontrib><title>Measure-valued loads for a hyperelastic model of soft tissues</title><title>International journal of non-linear mechanics</title><description>We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions.
•A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.</description><subject>Boundary conditions</subject><subject>Calculus of variations</subject><subject>Constitutive relationships</subject><subject>Elastic deformation</subject><subject>Euler-Lagrange equation</subject><subject>Flux density</subject><subject>Nonlinear elasticity</subject><subject>Soft tissues</subject><subject>Variational inequalities</subject><issn>0020-7462</issn><issn>1878-5638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNUEtLxDAQDqLguvofIp67TtKYpAcPsviCFS96DjGZYkq3WZN2wX9vlnrwKAwzw_A9mI-QSwYrBkxed6vQDXHow7BFt-LAWbnXmssjsmBa6epG1vqYLAA4VEpIfkrOcu6gcAWoBbl9QZunhNXe9hN62kfrM21jopZ-fu8wYW_zGBzdRo89jS3NsR3pGHKeMJ-Tk9b2GS9-55K8P9y_rZ-qzevj8_puU7laNGMlGmcBhCz-QkknAXXtfdmcFqw0yzlvLX6oWinZcKk1t61nDgqRlaqX5GrW3aX4VXxH08UpDcXScAlKgW5AFlQzo1yKOSdszS6FrU3fhoE5pGU68yctc0jLzGkV7nrmYnljHzCZ7AIODn1I6EbjY_iHyg9-vHgc</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Marzocchi, Alfredo</creator><creator>Musesti, Alessandro</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202112</creationdate><title>Measure-valued loads for a hyperelastic model of soft tissues</title><author>Marzocchi, Alfredo ; Musesti, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Calculus of variations</topic><topic>Constitutive relationships</topic><topic>Elastic deformation</topic><topic>Euler-Lagrange equation</topic><topic>Flux density</topic><topic>Nonlinear elasticity</topic><topic>Soft tissues</topic><topic>Variational inequalities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marzocchi, Alfredo</creatorcontrib><creatorcontrib>Musesti, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marzocchi, Alfredo</au><au>Musesti, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measure-valued loads for a hyperelastic model of soft tissues</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2021-12</date><risdate>2021</risdate><volume>137</volume><spage>103826</spage><pages>103826-</pages><artnum>103826</artnum><issn>0020-7462</issn><eissn>1878-5638</eissn><abstract>We study a simplified version of a class of constitutive relations used to describe large deformations of soft tissues, where the elastic energy density involves an exponential term. The class was originally introduced by Y.C. Fung as a model of many biological soft tissues in a series of papers during the Seventies. We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load, under quite general boundary conditions, and study the validity of the associated Euler–Lagrange equation in the sense of distributions.
•A class of hyperelastic materials involving an exponential term is studied.•We prove existence and uniqueness of the equilibrium solution for a general measure-valued external load.•The validity of the associated Euler–Lagrange equation in the sense of distributions is proved.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijnonlinmec.2021.103826</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7462 |
ispartof | International journal of non-linear mechanics, 2021-12, Vol.137, p.103826, Article 103826 |
issn | 0020-7462 1878-5638 |
language | eng |
recordid | cdi_proquest_journals_2607708906 |
source | Elsevier; ScienceDirect: Physics General Backfile |
subjects | Boundary conditions Calculus of variations Constitutive relationships Elastic deformation Euler-Lagrange equation Flux density Nonlinear elasticity Soft tissues Variational inequalities |
title | Measure-valued loads for a hyperelastic model of soft tissues |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measure-valued%20loads%20for%20a%20hyperelastic%20model%20of%20soft%20tissues&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Marzocchi,%20Alfredo&rft.date=2021-12&rft.volume=137&rft.spage=103826&rft.pages=103826-&rft.artnum=103826&rft.issn=0020-7462&rft.eissn=1878-5638&rft_id=info:doi/10.1016/j.ijnonlinmec.2021.103826&rft_dat=%3Cproquest_cross%3E2607708906%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-49ca0046746476c60e83dd76cc841cc8a222faeb73776926882afd1c049c19c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607708906&rft_id=info:pmid/&rfr_iscdi=true |