Loading…
Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing
Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, phys...
Saved in:
Published in: | IEEE pervasive computing 2021-10, Vol.20 (4), p.52-60 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63 |
container_end_page | 60 |
container_issue | 4 |
container_start_page | 52 |
container_title | IEEE pervasive computing |
container_volume | 20 |
creator | Nepal, Subigya Martinez, Gonzalo J. Mirjafari, Shayan Mattingly, Stephen Swain, Vedant Das Striegel, Aaron Audia, Pino G. Campbell, Andrew T. |
description | Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods. |
doi_str_mv | 10.1109/MPRV.2021.3112399 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607877721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9566617</ieee_id><sourcerecordid>2607877721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjt24mNV8VOpVSugcLQcdwMpTRzs9MDbk5CK086uZnakj5BroBMAqu6W6-e3CaMMJhyAcaVOyAiEyGImFD3tNZcxMJmdk4sQdpRCppQakdU0BAyhrD-i9hOjedUY20auiGauqg5tf3d19O78V7M3FqM1-sL5ytSd3vzFli4v9xi9YN2vl-SsMPuAV8c5JpuH-9fZU7xYPc5n00VsmeJtrJhJitzmyLEwXNEtEwgys5CnygiqhNqqlCUihy1LcpsJaTEXnGWCokxQ8jG5Hf423n0fMLR65w6-7io1kzTN0jRl0LlgcFnvQvBY6MaXlfE_Gqjuuemem-656SO3LnMzZEpE_PcrIaWElP8CshRpGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607877721</pqid></control><display><type>article</type><title>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</title><source>IEEE Xplore (Online service)</source><creator>Nepal, Subigya ; Martinez, Gonzalo J. ; Mirjafari, Shayan ; Mattingly, Stephen ; Swain, Vedant Das ; Striegel, Aaron ; Audia, Pino G. ; Campbell, Andrew T.</creator><creatorcontrib>Nepal, Subigya ; Martinez, Gonzalo J. ; Mirjafari, Shayan ; Mattingly, Stephen ; Swain, Vedant Das ; Striegel, Aaron ; Audia, Pino G. ; Campbell, Andrew T.</creatorcontrib><description>Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.</description><identifier>ISSN: 1536-1268</identifier><identifier>EISSN: 1558-2590</identifier><identifier>DOI: 10.1109/MPRV.2021.3112399</identifier><identifier>CODEN: IPCECF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cell phones ; Commuting ; Employment ; Mental health ; Mobile handsets ; Performance measurement ; Personnel ; Physiology ; Sensors ; Wearable computers</subject><ispartof>IEEE pervasive computing, 2021-10, Vol.20 (4), p.52-60</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</citedby><cites>FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</cites><orcidid>0000-0002-7165-2781 ; 0000-0001-7299-513X ; 0000-0002-4314-9505 ; 0000-0002-3157-2859 ; 0000-0002-7889-4791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9566617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nepal, Subigya</creatorcontrib><creatorcontrib>Martinez, Gonzalo J.</creatorcontrib><creatorcontrib>Mirjafari, Shayan</creatorcontrib><creatorcontrib>Mattingly, Stephen</creatorcontrib><creatorcontrib>Swain, Vedant Das</creatorcontrib><creatorcontrib>Striegel, Aaron</creatorcontrib><creatorcontrib>Audia, Pino G.</creatorcontrib><creatorcontrib>Campbell, Andrew T.</creatorcontrib><title>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</title><title>IEEE pervasive computing</title><addtitle>MPRV</addtitle><description>Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.</description><subject>Cell phones</subject><subject>Commuting</subject><subject>Employment</subject><subject>Mental health</subject><subject>Mobile handsets</subject><subject>Performance measurement</subject><subject>Personnel</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Wearable computers</subject><issn>1536-1268</issn><issn>1558-2590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjt24mNV8VOpVSugcLQcdwMpTRzs9MDbk5CK086uZnakj5BroBMAqu6W6-e3CaMMJhyAcaVOyAiEyGImFD3tNZcxMJmdk4sQdpRCppQakdU0BAyhrD-i9hOjedUY20auiGauqg5tf3d19O78V7M3FqM1-sL5ytSd3vzFli4v9xi9YN2vl-SsMPuAV8c5JpuH-9fZU7xYPc5n00VsmeJtrJhJitzmyLEwXNEtEwgys5CnygiqhNqqlCUihy1LcpsJaTEXnGWCokxQ8jG5Hf423n0fMLR65w6-7io1kzTN0jRl0LlgcFnvQvBY6MaXlfE_Gqjuuemem-656SO3LnMzZEpE_PcrIaWElP8CshRpGw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Nepal, Subigya</creator><creator>Martinez, Gonzalo J.</creator><creator>Mirjafari, Shayan</creator><creator>Mattingly, Stephen</creator><creator>Swain, Vedant Das</creator><creator>Striegel, Aaron</creator><creator>Audia, Pino G.</creator><creator>Campbell, Andrew T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7165-2781</orcidid><orcidid>https://orcid.org/0000-0001-7299-513X</orcidid><orcidid>https://orcid.org/0000-0002-4314-9505</orcidid><orcidid>https://orcid.org/0000-0002-3157-2859</orcidid><orcidid>https://orcid.org/0000-0002-7889-4791</orcidid></search><sort><creationdate>20211001</creationdate><title>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</title><author>Nepal, Subigya ; Martinez, Gonzalo J. ; Mirjafari, Shayan ; Mattingly, Stephen ; Swain, Vedant Das ; Striegel, Aaron ; Audia, Pino G. ; Campbell, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell phones</topic><topic>Commuting</topic><topic>Employment</topic><topic>Mental health</topic><topic>Mobile handsets</topic><topic>Performance measurement</topic><topic>Personnel</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nepal, Subigya</creatorcontrib><creatorcontrib>Martinez, Gonzalo J.</creatorcontrib><creatorcontrib>Mirjafari, Shayan</creatorcontrib><creatorcontrib>Mattingly, Stephen</creatorcontrib><creatorcontrib>Swain, Vedant Das</creatorcontrib><creatorcontrib>Striegel, Aaron</creatorcontrib><creatorcontrib>Audia, Pino G.</creatorcontrib><creatorcontrib>Campbell, Andrew T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE pervasive computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nepal, Subigya</au><au>Martinez, Gonzalo J.</au><au>Mirjafari, Shayan</au><au>Mattingly, Stephen</au><au>Swain, Vedant Das</au><au>Striegel, Aaron</au><au>Audia, Pino G.</au><au>Campbell, Andrew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</atitle><jtitle>IEEE pervasive computing</jtitle><stitle>MPRV</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>1536-1268</issn><eissn>1558-2590</eissn><coden>IPCECF</coden><abstract>Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MPRV.2021.3112399</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7165-2781</orcidid><orcidid>https://orcid.org/0000-0001-7299-513X</orcidid><orcidid>https://orcid.org/0000-0002-4314-9505</orcidid><orcidid>https://orcid.org/0000-0002-3157-2859</orcidid><orcidid>https://orcid.org/0000-0002-7889-4791</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-1268 |
ispartof | IEEE pervasive computing, 2021-10, Vol.20 (4), p.52-60 |
issn | 1536-1268 1558-2590 |
language | eng |
recordid | cdi_proquest_journals_2607877721 |
source | IEEE Xplore (Online service) |
subjects | Cell phones Commuting Employment Mental health Mobile handsets Performance measurement Personnel Physiology Sensors Wearable computers |
title | Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Impact%20of%20Commuting%20on%20Workplace%20Performance%20Using%20Mobile%20Sensing&rft.jtitle=IEEE%20pervasive%20computing&rft.au=Nepal,%20Subigya&rft.date=2021-10-01&rft.volume=20&rft.issue=4&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=1536-1268&rft.eissn=1558-2590&rft.coden=IPCECF&rft_id=info:doi/10.1109/MPRV.2021.3112399&rft_dat=%3Cproquest_cross%3E2607877721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607877721&rft_id=info:pmid/&rft_ieee_id=9566617&rfr_iscdi=true |