Loading…

Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing

Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, phys...

Full description

Saved in:
Bibliographic Details
Published in:IEEE pervasive computing 2021-10, Vol.20 (4), p.52-60
Main Authors: Nepal, Subigya, Martinez, Gonzalo J., Mirjafari, Shayan, Mattingly, Stephen, Swain, Vedant Das, Striegel, Aaron, Audia, Pino G., Campbell, Andrew T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63
cites cdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63
container_end_page 60
container_issue 4
container_start_page 52
container_title IEEE pervasive computing
container_volume 20
creator Nepal, Subigya
Martinez, Gonzalo J.
Mirjafari, Shayan
Mattingly, Stephen
Swain, Vedant Das
Striegel, Aaron
Audia, Pino G.
Campbell, Andrew T.
description Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.
doi_str_mv 10.1109/MPRV.2021.3112399
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607877721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9566617</ieee_id><sourcerecordid>2607877721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjt24mNV8VOpVSugcLQcdwMpTRzs9MDbk5CK086uZnakj5BroBMAqu6W6-e3CaMMJhyAcaVOyAiEyGImFD3tNZcxMJmdk4sQdpRCppQakdU0BAyhrD-i9hOjedUY20auiGauqg5tf3d19O78V7M3FqM1-sL5ytSd3vzFli4v9xi9YN2vl-SsMPuAV8c5JpuH-9fZU7xYPc5n00VsmeJtrJhJitzmyLEwXNEtEwgys5CnygiqhNqqlCUihy1LcpsJaTEXnGWCokxQ8jG5Hf423n0fMLR65w6-7io1kzTN0jRl0LlgcFnvQvBY6MaXlfE_Gqjuuemem-656SO3LnMzZEpE_PcrIaWElP8CshRpGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607877721</pqid></control><display><type>article</type><title>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</title><source>IEEE Xplore (Online service)</source><creator>Nepal, Subigya ; Martinez, Gonzalo J. ; Mirjafari, Shayan ; Mattingly, Stephen ; Swain, Vedant Das ; Striegel, Aaron ; Audia, Pino G. ; Campbell, Andrew T.</creator><creatorcontrib>Nepal, Subigya ; Martinez, Gonzalo J. ; Mirjafari, Shayan ; Mattingly, Stephen ; Swain, Vedant Das ; Striegel, Aaron ; Audia, Pino G. ; Campbell, Andrew T.</creatorcontrib><description>Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.</description><identifier>ISSN: 1536-1268</identifier><identifier>EISSN: 1558-2590</identifier><identifier>DOI: 10.1109/MPRV.2021.3112399</identifier><identifier>CODEN: IPCECF</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cell phones ; Commuting ; Employment ; Mental health ; Mobile handsets ; Performance measurement ; Personnel ; Physiology ; Sensors ; Wearable computers</subject><ispartof>IEEE pervasive computing, 2021-10, Vol.20 (4), p.52-60</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</citedby><cites>FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</cites><orcidid>0000-0002-7165-2781 ; 0000-0001-7299-513X ; 0000-0002-4314-9505 ; 0000-0002-3157-2859 ; 0000-0002-7889-4791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9566617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Nepal, Subigya</creatorcontrib><creatorcontrib>Martinez, Gonzalo J.</creatorcontrib><creatorcontrib>Mirjafari, Shayan</creatorcontrib><creatorcontrib>Mattingly, Stephen</creatorcontrib><creatorcontrib>Swain, Vedant Das</creatorcontrib><creatorcontrib>Striegel, Aaron</creatorcontrib><creatorcontrib>Audia, Pino G.</creatorcontrib><creatorcontrib>Campbell, Andrew T.</creatorcontrib><title>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</title><title>IEEE pervasive computing</title><addtitle>MPRV</addtitle><description>Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.</description><subject>Cell phones</subject><subject>Commuting</subject><subject>Employment</subject><subject>Mental health</subject><subject>Mobile handsets</subject><subject>Performance measurement</subject><subject>Personnel</subject><subject>Physiology</subject><subject>Sensors</subject><subject>Wearable computers</subject><issn>1536-1268</issn><issn>1558-2590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EEqXwAIhLJM4pXjt24mNV8VOpVSugcLQcdwMpTRzs9MDbk5CK086uZnakj5BroBMAqu6W6-e3CaMMJhyAcaVOyAiEyGImFD3tNZcxMJmdk4sQdpRCppQakdU0BAyhrD-i9hOjedUY20auiGauqg5tf3d19O78V7M3FqM1-sL5ytSd3vzFli4v9xi9YN2vl-SsMPuAV8c5JpuH-9fZU7xYPc5n00VsmeJtrJhJitzmyLEwXNEtEwgys5CnygiqhNqqlCUihy1LcpsJaTEXnGWCokxQ8jG5Hf423n0fMLR65w6-7io1kzTN0jRl0LlgcFnvQvBY6MaXlfE_Gqjuuemem-656SO3LnMzZEpE_PcrIaWElP8CshRpGw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Nepal, Subigya</creator><creator>Martinez, Gonzalo J.</creator><creator>Mirjafari, Shayan</creator><creator>Mattingly, Stephen</creator><creator>Swain, Vedant Das</creator><creator>Striegel, Aaron</creator><creator>Audia, Pino G.</creator><creator>Campbell, Andrew T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7165-2781</orcidid><orcidid>https://orcid.org/0000-0001-7299-513X</orcidid><orcidid>https://orcid.org/0000-0002-4314-9505</orcidid><orcidid>https://orcid.org/0000-0002-3157-2859</orcidid><orcidid>https://orcid.org/0000-0002-7889-4791</orcidid></search><sort><creationdate>20211001</creationdate><title>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</title><author>Nepal, Subigya ; Martinez, Gonzalo J. ; Mirjafari, Shayan ; Mattingly, Stephen ; Swain, Vedant Das ; Striegel, Aaron ; Audia, Pino G. ; Campbell, Andrew T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cell phones</topic><topic>Commuting</topic><topic>Employment</topic><topic>Mental health</topic><topic>Mobile handsets</topic><topic>Performance measurement</topic><topic>Personnel</topic><topic>Physiology</topic><topic>Sensors</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nepal, Subigya</creatorcontrib><creatorcontrib>Martinez, Gonzalo J.</creatorcontrib><creatorcontrib>Mirjafari, Shayan</creatorcontrib><creatorcontrib>Mattingly, Stephen</creatorcontrib><creatorcontrib>Swain, Vedant Das</creatorcontrib><creatorcontrib>Striegel, Aaron</creatorcontrib><creatorcontrib>Audia, Pino G.</creatorcontrib><creatorcontrib>Campbell, Andrew T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Explore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE pervasive computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nepal, Subigya</au><au>Martinez, Gonzalo J.</au><au>Mirjafari, Shayan</au><au>Mattingly, Stephen</au><au>Swain, Vedant Das</au><au>Striegel, Aaron</au><au>Audia, Pino G.</au><au>Campbell, Andrew T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing</atitle><jtitle>IEEE pervasive computing</jtitle><stitle>MPRV</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>52</spage><epage>60</epage><pages>52-60</pages><issn>1536-1268</issn><eissn>1558-2590</eissn><coden>IPCECF</coden><abstract>Commuting to and from work presents daily stressors for most workers. It is typically demanding in terms of time and cost, and can impact people’s mental health, job performance, and, broadly speaking, personal life. We use mobile phones and wearable sensing to capture location-related context, physiology, and behavioral patterns of N=275 information workers while they commute, mainly by driving, between home and work locations spread across the United States for a one-year period. We assess the impact of commuting on participant’s workplace performance, showing that we can predict self-reported workplace performance metrics based on passively collected mobile-sensing features captured during commute periods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MPRV.2021.3112399</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7165-2781</orcidid><orcidid>https://orcid.org/0000-0001-7299-513X</orcidid><orcidid>https://orcid.org/0000-0002-4314-9505</orcidid><orcidid>https://orcid.org/0000-0002-3157-2859</orcidid><orcidid>https://orcid.org/0000-0002-7889-4791</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-1268
ispartof IEEE pervasive computing, 2021-10, Vol.20 (4), p.52-60
issn 1536-1268
1558-2590
language eng
recordid cdi_proquest_journals_2607877721
source IEEE Xplore (Online service)
subjects Cell phones
Commuting
Employment
Mental health
Mobile handsets
Performance measurement
Personnel
Physiology
Sensors
Wearable computers
title Assessing the Impact of Commuting on Workplace Performance Using Mobile Sensing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Impact%20of%20Commuting%20on%20Workplace%20Performance%20Using%20Mobile%20Sensing&rft.jtitle=IEEE%20pervasive%20computing&rft.au=Nepal,%20Subigya&rft.date=2021-10-01&rft.volume=20&rft.issue=4&rft.spage=52&rft.epage=60&rft.pages=52-60&rft.issn=1536-1268&rft.eissn=1558-2590&rft.coden=IPCECF&rft_id=info:doi/10.1109/MPRV.2021.3112399&rft_dat=%3Cproquest_cross%3E2607877721%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-92a4fbcbe3efa390d25e168c1b79a50959d97245b1d24bc856ceb532850e64e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607877721&rft_id=info:pmid/&rft_ieee_id=9566617&rfr_iscdi=true