Loading…
Optimal Hybrid PV Array Topologies to Maximize the Power Output by Reducing the Effect of Non-Uniform Operating Conditions
The photovoltaic (PV) system center inverter architecture comprises various conventional array topologies such as simple-series (S-S), parallel (P), series-parallel (S-P), total-cross-tied (T-C-T), bridge-linked (B-L), and honey-comb (H-C). The conventional PV array topologies under non-uniform oper...
Saved in:
Published in: | Electronics (Basel) 2021-12, Vol.10 (23), p.3014 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The photovoltaic (PV) system center inverter architecture comprises various conventional array topologies such as simple-series (S-S), parallel (P), series-parallel (S-P), total-cross-tied (T-C-T), bridge-linked (B-L), and honey-comb (H-C). The conventional PV array topologies under non-uniform operating conditions (NUOCs) produce a higher amount of mismatching power loss and represent multiple maximum-power-points (M-P-Ps) in the output characteristics. The performance of T-C-T topology is found superior among the conventional topologies under NUOCs. However, T-C-T topology’s main limitations are higher redundancy, more number of electrical connections, higher cabling loss, poor performance during row-wise shading patterns, and more number of switches and sensors for the re-configuration of PV modules. This paper proposes the various optimal hybrid PV array topologies to overcome the limitations of conventional T-C-T array topology. The proposed hybrid topologies are such as series-parallel-cross-tied (S-P-C-T), bridge-link-cross-tied (B-L-C-T), honey-comb-cross-tied (H-C-C-T), series-parallel-total-cross-tied (S-P-T-C-T), bridge-link-total-cross-tied (B-L-T-C-T), honey-comb-total-cross-tied (H-C-T-C-T), and bridge-link-honey-comb (B-L-H-C). The proposed hybrid topologies performance is evaluated and compared with the conventional topologies under various NUOCs. The parameters used for the comparative study are open-circuit voltage, short-circuit current, global-maximum-power-point (GMPP), local-maximum-power-point (LMPP), number of LMPPs, and fill factor (FF). Furthermore, the mismatched power loss and the conversion efficiency of conventional and hybrid array topologies are also determined. Based on the results, it is found that the hybrid array topologies maximize the power output by mitigating the effect of NUOCs and reducing the number of LMPPs. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics10233014 |