Loading…
Framework of Prediction Model for Mid- to Long-Term Performance Changes of Urban Railway Facilities Based on Performance Evaluation Reports
To maintain railway facilities in an appropriate state, systematic management based on mid- and long-term maintenance plans through future performance prediction must be carried out. To this end, it is necessary to establish and utilize a model that can predict mid- to long-term performance changes...
Saved in:
Published in: | Sustainability 2021-12, Vol.13 (23), p.13397 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To maintain railway facilities in an appropriate state, systematic management based on mid- and long-term maintenance plans through future performance prediction must be carried out. To this end, it is necessary to establish and utilize a model that can predict mid- to long-term performance changes of railway facilities by predicting performance changes of individual sub-facilities. However, predicting changes in the performance of all sub-facilities can be difficult as it requires large volumes of data, and railway facilities are a collection of numerous sub-facilities. Therefore, in this study, a framework for a model that can predict mid- to long-term performance changes of railway facilities through analysis of continuously accumulated performance evaluation results is proposed. The model is a system with a series of flows that can classify performance evaluation results by individual sub-facilities, predict performance changes by each sub-facility using statistical methods, and predict mid- to long-term performance changes of the facility. The developed framework was applied to 36,537 sub-facilities comprising 12 lines of two urban railways in South Korea to illustrate the model and verify its applicability and effectiveness. This study contributes in terms of its methodology in establishing a framework for predicting mid- to long-term performance changes, providing the basis for the development of an automated model able to continuously predict performance changes of individual sub-facilities. In practical terms, it is expected that railway facility managers who allow trade-off between reliability and usability can contribute to establishing the mid- to long-term maintenance plans by utilizing the model proposed in this study, instead of subjectively building them. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su132313397 |